1,138 research outputs found

    Transmission and group delay of microring coupled-resonator optical waveguides

    Get PDF
    We measured the transmission and group delay of microring coupled-resonator optical waveguides (CROWs). The CROWs consisted of 12 weakly coupled, microring resonators fabricated in optical polymers (PMMA on Cytop). The intrinsic quality factor of the resonators was 18,000 and the interresonator coupling was 1%, resulting in a delay of 110-140 ps and a slowing factor of 23-29 over a 17 GHz bandwidth

    Polymer Microring Coupled-Resonator Optical Waveguides

    Get PDF
    We present measurements of the transmission and dispersion properties of coupled-resonator optical waveguides (CROWs) consisting of weakly coupled polymer microring resonators. The fabrication and the measurement methods of the CROWs are discussed as well. The experimental results agree well with the theoretical loss, waveguide dispersion, group delay, group velocity, and group-velocity dispersion (GVD). The intrinsic quality factors of the microrings were about 1.5 times 10^4 to 1.8 times 10^4, and group delays greater than 100 ps were measured with a GVD between -70 and 100 ps/(nm x resonator). With clear and simple spectral responses and without a need for the tuning of the resonators, the polymer microring CROWs demonstrate the practicability of using a large number of microresonators to control the propagation of optical waves

    Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control

    Get PDF
    An InGaAsP-InP optical switch geometry based on electrical control of waveguide-resonator coupling is demonstrated. Thermooptic tuning of a Mach-Zehnder interferometer integrated with a racetrack resonator is shown to result in switching with ON-OFF contrast up to 18.5 dB. The optical characteristics of this unique design enable a substantial reduction of the switching power, to a value of 26 mW in comparison with 40 mW for a conventional Mach-Zehnder interferometer switch. Modulation response measurements reveal a 3 dB bandwidth of 400 kHz and a rise time of 1.8 µs, comparing favorably with current state-of-the-art thermooptic switches

    Electrically-pumped, broad-area, single-mode photonic crystal lasers

    Get PDF
    Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e^2 modal width of 25μm and a length of 600μm

    Active coupled-resonator optical waveguides. II. Current injection InP-InGaAsP Fabry-Perot resonator arrays

    Get PDF
    We investigate active, electrically pumped coupled-resonator optical waveguides (CROWs) in the form of InP-InGaAsP Fabry-Perot resonator arrays. We discuss the fabrication of these devices and present measurements of the transmission spectra. The signal-to-noise ratio is found to be a strong function of wavelength and degraded rapidly along the resonator chain away from the input. Our results highlight a number of ingredients toward practical implementations loss-compensated and amplifying CROWs

    Two-dimensional Bragg grating lasers defined by electron-beam lithography

    Get PDF
    Two-dimensional Bragg grating (2DBG) lasers with two quarter-wave slip line defects have been designed and fabricated by electron-beam lithography and reactive ion etching. Unlike conventional two-dimensional photonic crystal defect lasers, which use a large refractive index perturbation to confine light in a plane, the 2DBG structures described here selectively control the longitudinal and transverse wave vector components using a weak index perturbation. Two line defects perpendicular to each other are introduced in the 2DBG to define the optical resonance condition in the longitudinal and transverse directions. In this article, we describe the lithography process used to pattern these devices. The 2DBG lasers were defined using polymethylmethacrylate resist exposed in a Leica Microsystems EBPG 5000+ electron-beam writer at 100 kV. A proximity correction code was used to obtain a uniform pattern distribution over a large area, and a dosage matrix was used to optimize the laser design parameters. Measurements of electrically pumped 2DBG lasers showed modal selection in both the longitudinal and transverse directions due to proper design of the grating and defects, making them promising candidates for single-mode, high power, high efficiency, large-area lasers

    Electrically Pumped, Edge-Emitting, Large-Area Photonic Crystal Lasers with Straight and Angled Facets

    Get PDF
    We propose and demonstrate electrically pumped, edge-emitting, large-area photonic crystal lasers. Effective index-guided and Bragg-guided lasing modes are obtained depending on the design of photonic crystal and facets
    corecore