196 research outputs found
Efficacy of laser capture microdissection plus RT-PCR technique in analyzing gene expression levels in human gastric cancer and colon cancer
<p>Abstract</p> <p>Background</p> <p>Thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyltransferase gene expressions are reported to be valid predictive markers for 5-fluorouracil sensitivity to gastrointestinal cancer. For more reliable predictability, their expressions in cancer cells and stromal cells in the cancerous tissue (cancerous stroma) have been separately investigated using laser capture microdissection.</p> <p>Methods</p> <p>Thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyltransferase mRNA in cancer cells and cancerous stroma from samples of 47 gastric and 43 colon cancers were separately quantified by reverse transcription polymerase chain reaction after laser capture microdissection.</p> <p>Results</p> <p>In both gastric and colon cancers, thymidylate synthase and orotate phosphoribosyltransferase mRNA expressions were higher (p < 0.0001, p <0.0001 respectively in gastric cancer and P = 0.0002, p < 0.0001 respectively in colon cancer) and dihydropyrimidine dehydrogenase mRNA expressions were lower in cancer cells than in cancerous stroma (P = 0.0136 in gastric cancer and p < 0.0001 in colon cancer). In contrast, thymidine phosphorylase mRNA was higher in cancer cells than in cancerous stroma in gastric cancer (p < 0.0001) and lower in cancer cells than in cancerous stroma in colon cancer (P = 0.0055).</p> <p>Conclusion</p> <p>By using this method, we could estimate gene expressions separately in cancer cells and stromal cells from colon and gastric cancers, in spite of the amount of stromal tissue. Our method is thought to be useful for accurately evaluating intratumoral gene expressions.</p
Pharmacogenetic Analysis of INT 0144 Trial: Association of Polymorphisms with Survival and Toxicity in Rectal Cancer Patients Treated with 5-FU and Radiation
PURPOSE
We tested whether 18 polymorphisms in 16 genes (GSTP1, COX2, IL10, EGFR, EGF, FGFR4, CCDN1, VEGFR2, VEGF, CXCR2, IL8, MMP3, ICAM1, ERCC1, RAD51, and XRCC3) would predict disease-free survival (DFS), overall survival (OS), and toxicity in the INT0144 trial, which was designed to investigate different postoperative regimens of 5-fluorouracil (5-FU)-based chemoradiation (CRT) in locally advanced rectal cancers: Arm 1 consisted of bolus 5-FU followed by 5-FU protracted venous infusion (PVI) with radiotherapy; arm 2 was induction and concomitant PVI 5-FU with radiotherapy and arm 3 was induction and concomitant bolus 5-FU with radiotherapy.
EXPERIMENTAL DESIGN
DNA from 746 stage II/III rectal patients enrolled in the Southwest Oncology Group (SWOG) S9304 phase III trial was analyzed. Genomic DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) tumor tissue. The polymorphisms were analyzed using direct DNA-sequencing or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).
RESULTS
GSTP1-Ile105Val (rs1695) was significantly associated with DFS and OS and its effect did not vary by treatment arm. The five-year DFS and OS were 53% and 58%, respectively, for G/G, 66% and 72% for G/A, and 57% and 66% for A/A patients. In arm 2, IL8-251A/A genotype (rs4073) was associated with a lower risk of toxicities (P = 0.04). The VEGFR2 H472Q Q/Q genotype (rs1870377) was associated with a higher risk of grade 3-5 proximal upper gastrointestinal tract (PUGIT) mucositis (P = 0.04) in arm 2. However, in arm 1, this genotype was associated with a lower risk of PUGIT mucositis (P = 0.004).
CONCLUSION
rs1695 may be prognostic in patients with rectal cancer treated with adjuvant CRT. rs4073 and rs1870377 may exhibit different associations with toxicity, according to the 5-FU schedule
Antiproliferative effect of immunoliposomes containing 5-fluorodeoxyuridine-dipalmitate on colon cancer cells
We have investigated the antiproliferative action towards CC531 colon adenocarcinoma cells of target cell-specific immunoliposomes containing the amphiphilic dipalmitoyl derivative of 5-fluorodeoxyuridine (FUdR-dP). FUdR-dP incorporated in immunoliposomes caused a 13-fold stronger inhibition of CC531 cell growth in vitro, during a 72-h treatment, than FUdR-dP in liposomes without antibody, demonstrating that the prodrug is efficiently hydrolysed to yield the active drug, FUdR, intracellularly. The intracellular release of active FUdR was confirmed by determining the fate of H-3-labelled immunoliposomal FUdR-dP. Treatments shorter than 72 h with FUdR-dP in immunoliposomes resulted in anti-tumour activities comparable to, or even higher than, that of free FUdR. The shorter treatments reflect more closely the in vivo situation and illustrate the potential advantage of the use of immunoliposomes over non-targeted liposomal FUdR-dP or free FUdR. Association of tumour cell-specific immunoliposomes with CC531 cells was up to tenfold higher than that of liposomes without antibody or with irrelevant IgG coupled, demonstrating a specific interaction between liposomes and target cells which causes an efficient intracellular delivery of the drug. Since biochemical evidence indicates a lack of internalization or degradation of the liposomes as such; we postulate that entry of the drug most likely involves the direct transfer of the prodrug from the immunoliposome to the cell membrane during its antigen-specific interaction with the cells. followed by hydrolysis of FUdR-dP leading to relatively high intracellular FUdR-levels. In conclusion, we describe a targeted liposomal formulation for the anticancer drug FUdR, which is able to deliver the active drug to colon carcinoma cells with high efficiency, without the need for the cells to internalize the liposomes as such
Polymorphisms of glutathione S-transferases (GST) and thymidylate synthase (TS) β novel predictors for response and survival in gastric cancer patients
To evaluate the predictive value of a panel of gene polymorphisms involved in metabolism of 5-FU and cisplatin on clinical outcome in advanced gastric cancer patients. A total of 52 patients were enrolled in this study. DNA was extracted from paraffin-embedded tumour specimen. Genotypes were determined using PCR-RFLP. Median survival time was 6.0 months (95% CI 3.9;8.1). Overall response rate was 26%. Patients possessing the glutathione S-transferase P1-105 Valine/Valine (GSTP1-105VV) genotype showed a response rate of 67% compared to 21% in patients harbouring at least one GSTP1-105 Isoleucine (GSTP1-105I) allele (P=0.038). GSTP1-105VV patients demonstrated a significant superior median survival time of 15.0 months (95% CI 7.8;22.0) compared to 6.0 months (95% CI 5.1;7.0) in patients with at least one GSTP1-105I allele (P=0.037). Patients possessing a favourable thymidylate synthase (TS) genotype (2R/2R, 2R/3RC, 3RC/3RC) experienced a superior survival time of 10.2 months (95% CI 5.1;15.3) compared to 6.0 months (95% CI 5.0;7.0) in patients with unfavourable TS genotypes (P=0.099). Patients harbouring the GSTP1-105II genotype and one of the unfavourable TS genotypes showed an inferior median survival time of 6.0 months (95% CI 3.9;8.1) compared to 11 months (95% CI 6,23;15,77) in patients with either GSTP1-105VV or a favourable TS genotype (P=0.044). Testing for TS and GSTP1 polymorphisms may allow identification of gastric cancer patients who will benefit from 5-FU/cisplatin chemotherapy, sparing others the side effects of this chemotherapy
Changes in the status of p53 affect drug sensitivity to thymidylate synthase (TS) inhibitors by altering TS levels
Colorectal cancer (CRC) resistance to fluoropyrimidines and other inhibitors of thymidylate synthase (TS) is a serious clinical problem often associated with increased intracellular levels of TS. Since the tumour suppressor gene p53, which is mutated in 50% of CRC, regulates the expression of several genes, it may modulate TS activity, and changes in the status of p53 might be responsible for chemoresistance. Therefore, this study was aimed to investigate TS levels and sensitivity to TS inhibitors in wild-type (wt) and mutant (mt) p53 CRC cells, Lovo and WiDr, respectively, transfected with mt and wt p53. Lovo 175X2 cells (transfected with mt p53) were more resistant to 5-fluorouracil (5-FU; 2-fold), nolatrexed (3-fold), raltitrexed (3-fold) and pemetrexed (10-fold) in comparison with the wt p53 parental cells Lovo 92. Resistance was associated with an increase in TS protein expression and catalytic activity, which might be caused by the loss of the inhibitory effect on the activity of TS promoter or by the lack of TS mRNA degradation, as suggested by the reversal of TS expression to the levels of Lovo 92 cells by adding actinomycin. In contrast, Lovo li cells, characterized by functionally inactive p53, were 3-13-fold more sensitive to nolatrexed, raltitrexed and pemetrexed, and had a lower TS mRNA, protein expression and catalytic activity than Lovo 92. However, MDM-2 expression was significantly higher in Lovo li, while no significant differences were observed in Lovo 175X2 cells with respect to Lovo 92. Finally, mt p53 WiDr transfected with wt p53 were not significantly different from mt p53 WiDr cells with respect to sensitivity to TS inhibitors or TS levels. Altogether, these results indicate that changes in the status of p53, can differently alter sensitivity to TS inhibitors by affecting TS levels, depending on activity or cell line, and might explain the lack of clear correlation between mutations in p53 and clinical outcome after chemotherapy with TS inhibitors
- β¦