35,997 research outputs found
Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation
In this paper, we consider the distributive queue-aware power and subband
allocation design for a delay-optimal OFDMA uplink system with one base
station, users and independent subbands. Each mobile has an uplink
queue with heterogeneous packet arrivals and delay requirements. We model the
problem as an infinite horizon average reward Markov Decision Problem (MDP)
where the control actions are functions of the instantaneous Channel State
Information (CSI) as well as the joint Queue State Information (QSI). To
address the distributive requirement and the issue of exponential memory
requirement and computational complexity, we approximate the subband allocation
Q-factor by the sum of the per-user subband allocation Q-factor and derive a
distributive online stochastic learning algorithm to estimate the per-user
Q-factor and the Lagrange multipliers (LM) simultaneously and determine the
control actions using an auction mechanism. We show that under the proposed
auction mechanism, the distributive online learning converges almost surely
(with probability 1). For illustration, we apply the proposed distributive
stochastic learning framework to an application example with exponential packet
size distribution. We show that the delay-optimal power control has the {\em
multi-level water-filling} structure where the CSI determines the instantaneous
power allocation and the QSI determines the water-level. The proposed algorithm
has linear signaling overhead and computational complexity ,
which is desirable from an implementation perspective.Comment: To appear in Transactions on Signal Processin
Convergence-Optimal Quantizer Design of Distributed Contraction-based Iterative Algorithms with Quantized Message Passing
In this paper, we study the convergence behavior of distributed iterative
algorithms with quantized message passing. We first introduce general iterative
function evaluation algorithms for solving fixed point problems distributively.
We then analyze the convergence of the distributed algorithms, e.g. Jacobi
scheme and Gauss-Seidel scheme, under the quantized message passing. Based on
the closed-form convergence performance derived, we propose two quantizer
designs, namely the time invariant convergence-optimal quantizer (TICOQ) and
the time varying convergence-optimal quantizer (TVCOQ), to minimize the effect
of the quantization error on the convergence. We also study the tradeoff
between the convergence error and message passing overhead for both TICOQ and
TVCOQ. As an example, we apply the TICOQ and TVCOQ designs to the iterative
waterfilling algorithm of MIMO interference game.Comment: 17 pages, 9 figures, Transaction on Signal Processing, accepte
Detection of Striped Superconductors Using Magnetic Field Modulated Josephson Effect
In a very interesting recent Letter\cite{berg}, the authors suggested that a
novel form of superconducting state is realized in LaBaCuO with
close to 1/8. This suggestion was based on experiments\cite{li} on this
compound which found predominantly two-dimensional (2D) characters of the
superconducting state, with extremely weak interplane coupling. Later this
specific form of superconducting state was termed striped
superconductors\cite{berg08}. The purpose of this note is to point out that the
suggested form\cite{berg} of the superconducting order parameter can be
detected directly using magnetic field modulated Josephson effect.Comment: Expanded version as appeared in prin
Decentralized Fair Scheduling in Two-Hop Relay-Assisted Cognitive OFDMA Systems
In this paper, we consider a two-hop relay-assisted cognitive downlink OFDMA
system (named as secondary system) dynamically accessing a spectrum licensed to
a primary network, thereby improving the efficiency of spectrum usage. A
cluster-based relay-assisted architecture is proposed for the secondary system,
where relay stations are employed for minimizing the interference to the users
in the primary network and achieving fairness for cell-edge users. Based on
this architecture, an asymptotically optimal solution is derived for jointly
controlling data rates, transmission power, and subchannel allocation to
optimize the average weighted sum goodput where the proportional fair
scheduling (PFS) is included as a special case. This solution supports
decentralized implementation, requires small communication overhead, and is
robust against imperfect channel state information at the transmitter (CSIT)
and sensing measurement. The proposed solution achieves significant throughput
gains and better user-fairness compared with the existing designs. Finally, we
derived a simple and asymptotically optimal scheduling solution as well as the
associated closed-form performance under the proportional fair scheduling for a
large number of users. The system throughput is shown to be
, where is the
number of users in one cluster, is the number of subchannels and is
the active probability of primary users.Comment: 29 pages, 9 figures, IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL
PROCESSIN
Queue-Aware Distributive Resource Control for Delay-Sensitive Two-Hop MIMO Cooperative Systems
In this paper, we consider a queue-aware distributive resource control
algorithm for two-hop MIMO cooperative systems. We shall illustrate that relay
buffering is an effective way to reduce the intrinsic half-duplex penalty in
cooperative systems. The complex interactions of the queues at the source node
and the relays are modeled as an average-cost infinite horizon Markov Decision
Process (MDP). The traditional approach solving this MDP problem involves
centralized control with huge complexity. To obtain a distributive and low
complexity solution, we introduce a linear structure which approximates the
value function of the associated Bellman equation by the sum of per-node value
functions. We derive a distributive two-stage two-winner auction-based control
policy which is a function of the local CSI and local QSI only. Furthermore, to
estimate the best fit approximation parameter, we propose a distributive online
stochastic learning algorithm using stochastic approximation theory. Finally,
we establish technical conditions for almost-sure convergence and show that
under heavy traffic, the proposed low complexity distributive control is global
optimal.Comment: 30 pages, 7 figure
- β¦