35,997 research outputs found

    Distributive Stochastic Learning for Delay-Optimal OFDMA Power and Subband Allocation

    Full text link
    In this paper, we consider the distributive queue-aware power and subband allocation design for a delay-optimal OFDMA uplink system with one base station, KK users and NFN_F independent subbands. Each mobile has an uplink queue with heterogeneous packet arrivals and delay requirements. We model the problem as an infinite horizon average reward Markov Decision Problem (MDP) where the control actions are functions of the instantaneous Channel State Information (CSI) as well as the joint Queue State Information (QSI). To address the distributive requirement and the issue of exponential memory requirement and computational complexity, we approximate the subband allocation Q-factor by the sum of the per-user subband allocation Q-factor and derive a distributive online stochastic learning algorithm to estimate the per-user Q-factor and the Lagrange multipliers (LM) simultaneously and determine the control actions using an auction mechanism. We show that under the proposed auction mechanism, the distributive online learning converges almost surely (with probability 1). For illustration, we apply the proposed distributive stochastic learning framework to an application example with exponential packet size distribution. We show that the delay-optimal power control has the {\em multi-level water-filling} structure where the CSI determines the instantaneous power allocation and the QSI determines the water-level. The proposed algorithm has linear signaling overhead and computational complexity O(KN)\mathcal O(KN), which is desirable from an implementation perspective.Comment: To appear in Transactions on Signal Processin

    Convergence-Optimal Quantizer Design of Distributed Contraction-based Iterative Algorithms with Quantized Message Passing

    Full text link
    In this paper, we study the convergence behavior of distributed iterative algorithms with quantized message passing. We first introduce general iterative function evaluation algorithms for solving fixed point problems distributively. We then analyze the convergence of the distributed algorithms, e.g. Jacobi scheme and Gauss-Seidel scheme, under the quantized message passing. Based on the closed-form convergence performance derived, we propose two quantizer designs, namely the time invariant convergence-optimal quantizer (TICOQ) and the time varying convergence-optimal quantizer (TVCOQ), to minimize the effect of the quantization error on the convergence. We also study the tradeoff between the convergence error and message passing overhead for both TICOQ and TVCOQ. As an example, we apply the TICOQ and TVCOQ designs to the iterative waterfilling algorithm of MIMO interference game.Comment: 17 pages, 9 figures, Transaction on Signal Processing, accepte

    Detection of Striped Superconductors Using Magnetic Field Modulated Josephson Effect

    Full text link
    In a very interesting recent Letter\cite{berg}, the authors suggested that a novel form of superconducting state is realized in La2βˆ’x_{2-x}Bax_xCuO4_4 with xx close to 1/8. This suggestion was based on experiments\cite{li} on this compound which found predominantly two-dimensional (2D) characters of the superconducting state, with extremely weak interplane coupling. Later this specific form of superconducting state was termed striped superconductors\cite{berg08}. The purpose of this note is to point out that the suggested form\cite{berg} of the superconducting order parameter can be detected directly using magnetic field modulated Josephson effect.Comment: Expanded version as appeared in prin

    Decentralized Fair Scheduling in Two-Hop Relay-Assisted Cognitive OFDMA Systems

    Full text link
    In this paper, we consider a two-hop relay-assisted cognitive downlink OFDMA system (named as secondary system) dynamically accessing a spectrum licensed to a primary network, thereby improving the efficiency of spectrum usage. A cluster-based relay-assisted architecture is proposed for the secondary system, where relay stations are employed for minimizing the interference to the users in the primary network and achieving fairness for cell-edge users. Based on this architecture, an asymptotically optimal solution is derived for jointly controlling data rates, transmission power, and subchannel allocation to optimize the average weighted sum goodput where the proportional fair scheduling (PFS) is included as a special case. This solution supports decentralized implementation, requires small communication overhead, and is robust against imperfect channel state information at the transmitter (CSIT) and sensing measurement. The proposed solution achieves significant throughput gains and better user-fairness compared with the existing designs. Finally, we derived a simple and asymptotically optimal scheduling solution as well as the associated closed-form performance under the proportional fair scheduling for a large number of users. The system throughput is shown to be O(N(1βˆ’qp)(1βˆ’qpN)ln⁑ln⁑Kc)\mathcal{O}\left(N(1-q_p)(1-q_p^N)\ln\ln K_c\right), where KcK_c is the number of users in one cluster, NN is the number of subchannels and qpq_p is the active probability of primary users.Comment: 29 pages, 9 figures, IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSIN

    Queue-Aware Distributive Resource Control for Delay-Sensitive Two-Hop MIMO Cooperative Systems

    Full text link
    In this paper, we consider a queue-aware distributive resource control algorithm for two-hop MIMO cooperative systems. We shall illustrate that relay buffering is an effective way to reduce the intrinsic half-duplex penalty in cooperative systems. The complex interactions of the queues at the source node and the relays are modeled as an average-cost infinite horizon Markov Decision Process (MDP). The traditional approach solving this MDP problem involves centralized control with huge complexity. To obtain a distributive and low complexity solution, we introduce a linear structure which approximates the value function of the associated Bellman equation by the sum of per-node value functions. We derive a distributive two-stage two-winner auction-based control policy which is a function of the local CSI and local QSI only. Furthermore, to estimate the best fit approximation parameter, we propose a distributive online stochastic learning algorithm using stochastic approximation theory. Finally, we establish technical conditions for almost-sure convergence and show that under heavy traffic, the proposed low complexity distributive control is global optimal.Comment: 30 pages, 7 figure
    • …
    corecore