1,395 research outputs found

    Double symmetry breaking and 2D quantum phase diagram in spin-boson systems

    Get PDF
    The quantum ground state properties of two independent chains of spins (two-levels systems) interacting with the same bosonic field are theoretically investigated. Each chain is coupled to a different quadrature of the field, leading to two independent symmetry breakings for increasing values of the two spin-boson interaction constants ΩC\Omega_C and ΩI\Omega_I. A phase diagram is provided in the plane (ΩC\Omega_C,ΩI\Omega_I) with 4 different phases that can be characterized by the complex bosonic coherence of the ground states and can be manipulated via non-abelian Berry effects. In particular, when ΩC\Omega_C and ΩI\Omega_I are both larger than two critical values, the fundamental subspace has a four-fold degeneracy. Possible implementations in superconducting or atomic systems are discussed

    The statistics of primordial black holes in a radiation dominated Universe -- recent and new results

    Full text link
    We review the non-linear statistics of Primordial Black Holes that form from the collapse of over-densities in a radiation dominated Universe. We focus on the scenario in which large over-densities are generated by rare and Gaussian curvature perturbations during inflation. As new results, we show that the mass spectrum follows a power law determined by the critical exponent of the self-similar collapse up to a power spectrum dependent cut-off, and that the abundance related to very narrow power spectra is exponentially suppressed. Related to this, we discuss and explicitly show that the Press-Schechter approximation, as well as the statistics of mean profiles, lead to wrong conclusions for the abundance and mass spectrum. Finally, we clarify that the transfer function in the statistics of initial conditions for primordial black holes formation (the abundance) does not play a significant role.Comment: v2 typos corrected and clarifications added. Results unchanged. Version accepted for publication as a review in the journal Universe, special issue on PBHs. 18 pages; 7 figure

    Observation of a New Fluxon Resonant Mechanism in Annular Josephson Tunnel Structures

    Full text link
    A novel dynamical state has been observed in the dynamics of a perdurbed sine-Gordon system. This resonant state, has been experimentally observed as a singularity in the dc current voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. With this respect, it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    Physics of Trans-Planckian Gravity

    Full text link
    We study the field theoretical description of a generic theory of gravity flowing to Einstein General Relativity in IR. We prove that, if ghost-free, in the weakly coupled regime such a theory can never become weaker than General Relativity. Using this fact, as a byproduct, we suggest that in a ghost-free theory of gravity trans-Planckian propagating quantum degrees of freedom cannot exist. The only physical meaning of a trans-Planckian pole is the one of a classical state (Black Hole) which is described by the light IR quantum degrees of freedom and gives exponentially-suppressed contributions to virtual processes. In this picture Einstein gravity is UV self-complete, although not Wilsonian, and sub-Planckian distances are unobservable in any healthy theory of gravity. We then finally show that this UV/IR correspondence puts a severe constraint on any attempt of conventional Wilsonian UV-completion of trans-Planckian gravity. Specifically, there is no well-defined energy domain in which gravity could become asymptotically weak or safe.Comment: 23 pages, 4 figures, v2: Paper reorganized to improve clarity; additional explanations and references added; version accepted for publication in Phys. Rev.

    Guidance and Robust Control of a Double-Hull Autonomous Underwater Vehicle

    Get PDF
    The aim of this paper is to present, discuss and evaluate two linear control solutions for an Autonomous Underwater Vehicle (AUV). As guidance solution, a waypoint following and station-keeping algorithm is presented. Then a PID design is proposed, through the decoupling of the linear system into three lightly interactive subsystems. A Linear Quadratic Regulator (LQR) design is also presented, based on the division of the linear system into longitudinal and lateral subsystems. A control allocation law is also presented to deal with the underactuation problems. Both controllers proved robust for this operating point although, regarding performance, and, for the performed simulation, the LQR controller proved more responsive.info:eu-repo/semantics/publishedVersio

    Peroxisome proliferator-activated receptor alpha plays a crucial role in behavioral repetition and cognitive flexibility in mice

    Get PDF
    Acknowledgments We thank Luca Giordano, Giovanni Esposito and Angelo Russo for technical assistance and Dr. Livio Luongo (Second University of Naples–Italy) for critical discussions. This work was supported by a Grant PRIN from Ministry of Education, Universities and Research (MIUR), Italy, to A.C. and the Wellcome Trust (WT098012) to L.K.H. and BBSRC (BB/K001418/1) to L.K.H. and G.D’A. G.D’A. received partial supports from a “FORGIARE” post-doctoral fellowship cofounded by the Polo delle Scienze e Tecnologie per la Vita, University of Naples Federico II and Compagnia di San Paolo Foundation, Turin, Italy (2010–2012).Peer reviewedPublisher PD
    corecore