21 research outputs found

    Unicentric castleman's disease located in the lower extremity: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Castleman's disease is a rare form of localized lymph node hyperplasia of uncertain etiology. Although the mediastinum is the most common site of involvement, rare cases occurring in lymph node bearing tissue of other localization have been reported, including only a few intramuscular cases. Unicentric and multicentric Castleman's disease are being distinguished, the latter harboring an unfavorable prognosis.</p> <p>Case Presentation</p> <p>Here, we present a case of unicentric Castleman's disease in a 37-year-old woman without associated neoplastic, autoimmune or infectious diseases. The lesion was located in the femoral region of the right lower extremity and surgically resected after radiographic workup and excisional biopsy examinations. The tumor comprised lymphoid tissue with numerous germinal centers with central fibrosis, onion-skinning and rich interfollicular vascularization. CD23-positive follicular dendritic cells were detected in the germinal centers and numerous CD138-positive plasma cells in interfollicular areas. The diagnosis of mixed cellularity type Castleman's disease was established and the patient recovered well.</p> <p>Conclusions</p> <p>In conclusion, the differential diagnosis of Castleman's disease should be considered when evaluating a sharply demarcated, hypervascularized lymphatic tumor located in the extremities. However, the developmental etiology of Castleman's disease remains to be further examined.</p

    Esophageal Plexiform Schwannoma

    Full text link

    Safety and sample adequacy of renal transplant surveillance biopsies

    Full text link
    Purpose: To report on the safety and adequacy of surveillance biopsy for detecting subclinical lesions in clinically stable renal grafts. Materials and methods: We established an in-patient surveillance biopsy program with the elective performance of a renal transplant biopsy during the first year after renal transplantation. All biopsies in our centre were performed or supervised by the same operator. Patients were admitted to the hospital the day of biopsy and were discharged after 24h of observation. All patients were biopsied in supine position, using a 16-gauge needle with a spring-loaded gun (Bard (R)) under real-time ultrasound guidance. Complication rates were retrospectively scored using the patients' charts and blood counts before and after biopsy. Major complications were defined as those requiring an intervention for resolution, a transfusion of blood products or an invasive procedure (angiography or surgery), and those that led to acute renal obstruction or failure, septicaemia, graft loss or death. In all other cases complications were considered minor. An adequate biopsy was defined as the presence of 7 or more glomeruli and at least one artery in the biopsy specimen. Results: We performed 282 surveillance biopsies in 248 patients between January 2006 and December 2011. None of the complications were major. We observed 6% minor complications (n = 17). 5.6% (n = 16) of the complications were related to bleeding, with macroscopic haematuria as the most common condition (n = 10; 3.5%), followed by pain (n = 6; 2.1%) eighter due to a perinephric hematoma (n = 5) or a subcutaneous hematoma (n = 1). The biopsies contained a median number of 9 glomeruli (range 0-39) with 70% of biopsies containing at least 7 glomeruli and one artery. Conclusion: The procedure for taking surveillance biopsies was proven to be safe. There were no major complications and only rare minor complications. The majority of the samples were adequate for histological examination

    Dose-response effects of PEGylated cholecystokinin on the behavioral satiety sequence

    Full text link
    Cholecystokinin (CCK) is known to have a short biological half-life. In order to prolong the half-life and create a new investigative tool, we previously PEGylated the peptide, yielding PEG-CCK(9), and demonstrated that it had a dose-dependent prolonged anorectic effect. The aim of this study was to investigate whether PEG-CCK(9) reduces food intake by inducing satiation or by abnormal physiological effects, such as pain, malaise, or nausea. An observational study was performed to examine the effects of different doses of PEG-CCK(9) (1, 2, 4, 8, or 16 microg kg(-1)) on feeding and other behaviors. The behavioral sequence associated with satiety (BSS), i.e. the orderly progression from eating, through grooming and activity, to resting, was analyzed. From the lowest dose tested (1 microg kg(-1)), PEG-CCK(9) caused a dose-dependent reduction in food intake due to a dose-related reduction in both the duration and frequency of eating and a dose-dependent increase in duration of rest. A dose-dependent acceleration in the temporal profile of the BSS was observed, while the normal structure of feeding behaviors was well preserved, except at the dose of 16 microg kg(-1) of PEG-CCK(9), at which a decrease in eating rate and grooming behavior was observed, together with the occurrence of a significant number of abdominal cramps. These findings suggest that the hypophagic response to PEG-CCK(9) is mainly induced by natural mechanisms of satiety, although abnormal physiological effects, such as abdominal cramps, might reinforce the food inhibitory effect, especially at high doses of PEG-CCK(9) (>8 microg kg(-1)).status: publishe

    Nanofracturing: a new technique for bone marrow stimulation in equine cartilage repair

    Get PDF
    Microfracture is the current standard in treatment of focal full-thickness cartilage lesions in horses, but clinical outcome may vary. Nanofracture is a novel technique that uses a commercially developed device to yield smaller diameter perforations with deeper penetration into the subchondral bone. Experimentally, in rabbits and sheep, nanofracture has been shown to result in superior repair compared to microfracture. The objective was to study the feasibility and preliminary outcome of nanofracture using a commercial device for treatment of cartilage defects in horses. Nanofracture was tested ex vivo in n=2 cadaveric equine stifle joints and in vivo in n=8 horses with experimental partial thickness cartilage defects in the medial femoral trochlear ridge. These were treated with an experimental biomaterial or nanofracture, and repair tissue was studied macroscopically (ICRS-I score) and microscopically (histological ICRS-II score and micro-CT) after 7 months. Both in cadaveric equine stifle joints and in vivo, the nanofracture device could readily be applied and allowed easy penetration of the subchondral bone. Repair tissue after 7 months was graded ‘near-normal’ macroscopically, while histologically, the abundant repair tissue proved mainly fibrocartilaginous in nature. Micro-CT revealed near-full restoration of mid-lesion cartilage layer thickness but altered subchondral bone microarchitecture. The in vivo study did not include a control group treated with conventional microfracture for comparison. To our knowledge, this is the first report on bone marrow stimulation using nanofracture as a potential method to enhance chondral defect repair in horses. In the in vivo study, no clinical adverse effects were observed, and promising good defect filling with fibrocartilaginous tissue was seen 7 months after treatment.La microfractura es el estándar actual en el tratamiento de lesiones focales de cartílago de grosor completo en caballos, pero el resultado clínico puede variar. La nanofractura es una técnica novedosa que utiliza un dispositivo desarrollado comercialmente para producir perforaciones de menor diámetro con una penetración más profunda en el hueso subcondral. Experimentalmente, en conejos y ovejas, se ha demostrado que la nanofractura da lugar a una reparación superior en comparación con la microfractura. El objetivo era estudiar la viabilidad y el resultado preliminar de la nanofractura utilizando un dispositivo comercial para el tratamiento de defectos del cartílago en caballos. La nanofractura se probó ex vivo en n=2 articulaciones de la ahogada cadavérica equina e in vivo en n=8 caballos con defectos de cartílago de espesor parcial experimental en la cresta troclear del fémur medial. Estos fueron tratados con un biomaterial experimental o nanofractura, y el tejido de reparación fue estudiado macroscópicamente (puntuación ICRS-I) y microscópicamente (puntuación histológica ICRS-II y micro-TC) después de 7 meses. Tanto en las articulaciones de la ahogada equina cadavérica como in vivo, el dispositivo de nanofractura podía aplicarse fácilmente y permitía una fácil penetración del hueso ubcondral. El tejido de reparación después de 7 meses fue calificado acroscópicamente como 'casi normal', mientras que histológicamente, el abundante tejido de reparación demostró ser principalmente de naturaleza fibrocartilaginosa. La micro-TC reveló una restauración casi completa del grosor de la capa de cartílago de la lesión media, pero alteró la microarquitectura del hueso subcondral. El estudio in vivo no incluyó un grupo de control tratado con microfractura convencional para la comparación. Hasta donde sabemos, este es el primer informe sobre la estimulación de la médula ósea usando la nanofractura como un método potencial para mejorar la reparación de defectos condrales en caballos. En el estudio in vivo, no se observaron efectos clínicos adversos, y se vio un buen relleno del defecto con tejido fibrocartilaginoso 7 meses después del tratamiento.Escuela de Medicina Veterinari
    corecore