399 research outputs found

    A Comparison of Deep Learning MOS Predictors for Speech Synthesis Quality

    Full text link
    This paper introduces a comparison of deep learning-based techniques for the MOS prediction task of synthesised speech in the Interspeech VoiceMOS challenge. Using the data from the main track of the VoiceMOS challenge we explore both existing predictors and propose new ones. We evaluate two groups of models: NISQA-based models and techniques based on fine-tuning the self-supervised learning (SSL) model wav2vec2_base. Our findings show that a simplified version of NISQA with 40% fewer parameters achieves results close to the original NISQA architecture on both utterance-level and system-level performances. Pre-training NISQA with the NISQA corpus improves utterance-level performance but shows no benefit on the system-level performance. Also, the NISQA-based models perform close to LDNet and MOSANet, 2 out of 3 baselines of the challenge. Fine-tuning wav2vec2_base shows superior performance than the NISQA-based models. We explore the mismatch between natural and synthetic speech and discovered that the performance of the SSL model drops consistently when fine-tuned on natural speech samples. We show that adding CNN features with the SSL model does not improve the baseline performance. Finally, we show that the system type has an impact on the predictions of the non-SSL models.Comment: Submitted to INTERSPEECH 202

    Lung adenocarcinoma with peculiar growth to the pulmonary artery and thrombus formation: report of a case

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cases of pulmonary artery masses have only rarely been reported, and the optimal type of the diagnosis and treatment is controversial.</p> <p>Case Presentation</p> <p>An 81-year-old woman was found to have an abnormal shadow on chest X-ray film. Computed tomography showed an irregularly bordered tumor centered in the hilar region extending from segment 6 to the middle lobe of the right lung. Pulmonary angiography showed complete occlusion of the trunk at the periphery proximal to the bifurcation of the posterior ascending branch. Based on bronchoscopic biopsy of the tumor, an adenocarcinoma was diagnosed. Middle and lower lobectomy was performed. Histopathologically, the adenocarcinoma had invaded the tunica intima of the pulmonary artery and also replaced the endothelium in the same region. Although a large thrombus was found at the vessel invasion site of the adenocarcinoma in the pulmonary artery, there were no malignant findings in the thrombus itself.</p> <p>Conclusions</p> <p>This is the first reported case of radical resection of a lung cancer with invasion along the pulmonary artery wherein a benign thrombus had formed. In general, surgery would be the treatment of choice for a pulmonary artery mass.</p

    Phonon-assisted radiofrequency absorption by gold nanoparticles resulting in hyperthermia

    Full text link
    It is suggested that in gold nanoparticles (GNPs) of about 5 nm sizes used in the radiofrequency (RF) hyperthermia, an absorption of the RF photon by the Fermi electron occurs with involvement of the longitudinal acoustic vibrational mode (LAVM), the dominating one in the distribution of vibrational density of states (VDOS). This physical mechanism helps to explain two observed phenomena: the size dependence of the heating rate (HR) in GNPs and reduced heat production in aggregated GNPs. The argumentation proceeds within the one-electron approximation, taking into account the discretenesses of energies and momenta of both electrons and LAVMs. The heating of GNPs is thought to consist of two consecutive processes: first, the Fermi electron absorbs simultaneously the RF photon and the LAVM available in the GNP; hereafter the excited electron gets relaxed within the GNP's boundary, exciting a LAVM with the energy higher than that of the previously absorbed LAVM. GNPs containing the Ta and/or Fe impurities are proposed for the RF hyperthermia as promising heaters with enhanced HRs, and GNPs with rare-earth impurity atoms are also brought into consideration. It is shown why the maximum HR values should be expected in GNPs with about 5-7 nm size.Comment: proceedings at the NATO Advanced Research workshop FANEM-2015 (Minsk, May 25-27, 2015). To be published in the final form in: "Fundamental and Applied NanoElectroMagnetics" (Springer Science + Business Media B.V.

    The Impact of Digital Storytelling on Social Agency: Early Experience at an Online University

    Get PDF
    Digital Storytelling\u27 is a term often used to refer to a number of different types of digital narrative including web-based stories, hypertexts, videoblogs and computer games. This emergent form of creative work has found an outlet in a wide variety of different domains ranging from community social history, to cookbooks, to the classroom. It is the latter domain that provides the focus for this paper, specifically the online classroom at the tertiary level...Early feedback from students suggests that listening to and telling \u27true stories\u27 was a compelling and emotionally-engaging experience, providing an opportunity for \u27transformative reflection\u27 (Lambert 2000). By including multimedia, learners were able to build upon the fundamentals, presenting content in an easy-to-absorb and compelling way. In terms of team assignments students learned to become more effective actors in collaborative work environments

    IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease

    Get PDF
    ABSTRACT Background: A novel T helper (Th) cell lineage, Th17, that exclusively produces the proinflammatory cytokine interleukin 17 (IL17) has been reported to play important roles in various inflammatory diseases. IL23 is also focused upon for its potential to promote Th17. Here, the roles of the IL23/IL17 axis in inflammatory bowel diseases such as ulcerative colitis (UC) and Crohn&apos;s disease (CD) were investigated. Methods: Mucosal samples were obtained from surgically resected specimens (controls, n = 12; UC, n = 17; CD, n = 22). IL17 production by isolated peripheral blood (PB) and lamina propria (LP) CD4 + cells was examined. Quantitative PCR amplification was performed to determine the mRNA expression levels of IL17, interferon c (IFNc), IL23 receptor (IL23R) and retinoic acid-related orphan receptor c (RORC) in LP CD4 + cells, and IL12 family members, such as IL12p40, IL12p35 and IL23p19, in whole mucosal specimens. The effects of exogenous IL23 on IL17 production by LP CD4 + cells were also examined. Results: IL17 production was higher in LP CD4 + cells than in PB. Significant IL17 mRNA upregulation in LP CD4 + cells was found in UC, while IFNc was increased in CD. IL23R and RORC were upregulated in LP CD4 + cells isolated from both UC and CD. IL17 production was significantly increased by IL23 in LP CD4 + cells from UC but not CD. Upregulated IL23p19 mRNA expression was correlated with IL17 in UC and IFNc in CD. Conclusions: IL23 may play important roles in controlling the differential Th1/Th17 balance in both UC and CD, although Th17 cells may exist in both diseases. Crohn&apos;s disease (CD) and ulcerative colitis (UC) are the two major forms of inflammatory bowel disease (IBD). Although the aetiology of IBD remains unclear, accumulating evidence suggests that dysfunction of the mucosal immune system plays important roles in IBD pathogenesis

    Evolution of Highly Polymorphic T Cell Populations in Siblings with the Wiskott-Aldrich Syndrome

    Get PDF
    Population level evolutionary processes can occur within a single organism when the germ line contains a mutation that confers a cost at the level of the cell. Here we describe how multiple compensatory mutations arose through a within-individual evolutionary process in two brothers with the immune deficiency Wiskott-Aldrich Syndrome (WAS). As a result, both brothers have T lymphocyte populations that are highly polymorphic at the locus of the germ line defect, and no single allele achieves fixation. WASP, the gene product affected in this disease, is specific to white blood cells where it is responsible for regulating actin cytoskeleton dynamics in a wide range of cellular responses. The brothers inherited a rare allele predicted to result in truncated WASP lacking the carboxy-terminal VCA domains, the region that directly catalyzes actin filament generation. Although the brothers' T cell populations are highly polymorphic, all share a corrective effect relative to the inherited allele in that they restore the VCA domain. This indicates massive selection against the truncated germ line allele. No single somatic allele becomes fixed in the circulating T cell population of either brother, indicating that a regulated step in maturation of the affected cell lineage is severely compromised by the germ line allele. Based on the finding of multiple somatic mutations, the known maturation pathway for T-lineage cells and the known defects of T cells and precursor thymocytes in mice with truncated WASP, we hypothesize that the presence of truncated WASP (WASPΔVCA) confers an extreme disadvantage in early developing thymocytes, above and beyond the known cost of absence of full-length WASP, and that the disadvantage likely occurs through dominant negative competition of WASPΔVCA with N-WASP, a protein that otherwise partially compensates for WASP absence in developing thymocytes

    DNAzyme Hybridization, Cleavage, Degradation and Sensing in Undiluted Human Blood Serum

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.analchem.5b00220.RNA-cleaving DNAzymes provide a unique platform for developing biosensors. However, a majority of the work has been performed in clean buffer solutions, while the activity of some important DNAzymes in biological sample matrices is still under debate. Two RNA-cleaving DNAzymes (17E and 10-23) are the most widely used. In this work, we carefully studied a few key aspects of the 17E DNAzyme in human blood serum, including hybridization, cleavage activity, and degradation kinetics. Since direct fluorescence monitoring is difficult due to the opacity of serum, denaturing and nondenaturing gel electrophoresis were combined for studying the interaction between serum proteins and DNAzymes. The 17E DNAzyme retains its activity in 90% human blood serum with a cleavage rate of 0.04 min–1, which is similar to that in the PBS buffer (0.06 min–1) with a similar ionic strength. The activity in serum can be accelerated to 0.3 min–1 with an additional 10 mM Ca2+. As compared to 17E, the 10-23 DNAzyme produces negligible cleavage in serum. Degradation of both the substrate and the DNAzyme strand is very slow in serum, especially at room temperature. Degradation occurs mainly at the fluorophore label (linked to DNA via an amide bond) instead of the DNA phosphodiester bonds. Serum proteins can bind more tightly to the 17E DNAzyme complex than to the single-stranded substrate or enzyme. The 17E DNAzyme hybridizes extremely fast in serum. With this understanding, the detection of DNA using the 17E DNAzyme is demonstrated in serum.University of Waterloo || Natural Sciences and Engineering Research Council || Foundation for Shenghua Scholar of Central South University|| National Natural Science Foundation of China || Grant No. 21301195 Fellowship from the China Scholarship Council || CSC, Grant No. 20140637011

    An integrative multi-dimensional genetic and epigenetic strategy to identify aberrant genes and pathways in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomics has substantially changed our approach to cancer research. Gene expression profiling, for example, has been utilized to delineate subtypes of cancer, and facilitated derivation of predictive and prognostic signatures. The emergence of technologies for the high resolution and genome-wide description of genetic and epigenetic features has enabled the identification of a multitude of causal DNA events in tumors. This has afforded the potential for large scale integration of genome and transcriptome data generated from a variety of technology platforms to acquire a better understanding of cancer.</p> <p>Results</p> <p>Here we show how multi-dimensional genomics data analysis would enable the deciphering of mechanisms that disrupt regulatory/signaling cascades and downstream effects. Since not all gene expression changes observed in a tumor are causal to cancer development, we demonstrate an approach based on multiple concerted disruption (MCD) analysis of genes that facilitates the rational deduction of aberrant genes and pathways, which otherwise would be overlooked in single genomic dimension investigations.</p> <p>Conclusions</p> <p>Notably, this is the first comprehensive study of breast cancer cells by parallel integrative genome wide analyses of DNA copy number, LOH, and DNA methylation status to interpret changes in gene expression pattern. Our findings demonstrate the power of a multi-dimensional approach to elucidate events which would escape conventional single dimensional analysis and as such, reduce the cohort sample size for cancer gene discovery.</p
    • …
    corecore