8 research outputs found

    Long chain branched impact copolymer of polypropylene: Microstructure and rheology

    No full text
    A biphasic impact copolymer of polypropylene (ICP) was modified with peroxide by reactive extrusion process resulting in reduced melt flow index, improved melt strength, and higher die swell. The polymers were for the first time subjected to systematic rheological and microstructural characterization in an effort to understand their structure-property relations. In shear rheological tests, the modified ICP displayed higher flow activation energy, reduced values of loss tangent and nearly equal frequency dependence of storage and loss modulli. The modified ICP also showed strain hardening behaviour in uniaxial extensional rheology and higher crystallization temperature in differential scanning calorimetry (DSC). All these are definitive indications of the presence of long chain branches (LCB). Fitting the rheological data of modified ICPs with the eXtended Pom Pom (XPP) model indicated the presence of LCB on the higher molecular weight fraction in the polymer, a result which was corroborated with multi-detector high temperature gel permeation chromatography (HT-GPC). More importantly, the matrix and rubber phases of the ICP were separately characterized for presence of long chain branching by rheology, DSC and HT-GPC. The results indicate that while LCB existed in the matrix phase, microgels were present in both phases indicating that the reaction with peroxide occurred in both phases. POLYM. ENG. SCI., 55:1463-1474, 2015. (c) 2014 Society of Plastics Engineer

    Extrusion film casting of long chain branched polypropylene

    No full text
    Extrusion film casting (EFC) is an important melt processing operation which is extensively used to make polypropylene (PP) films. Linear PP shows significant amount of necking and draw resonance during EFC. One of the ways to reduce necking is to introduce long chain branches (LCB) on the polymer backbone. The long branches impart extensional strain hardening behavior thereby stabilizing the melt flow. In this work, we investigate the influence of long chain branching in polypropylene on the extent of necking in the EFC process. Laboratory scale EFC experiments were performed on homopolymer PP of linear and long chain branched architectures. Simulations of the EFC process were carried out using the one-dimensional flow model of Silagy et al., Polym. Eng. Sci.,36, 2614 (1996) into which we incorporate two different multi-mode molecular constitutive equations namely, the eXtended Pom-Pom' equation (XPP, for long chain branched PP) and the Rolie-Poly' equation (RP-S, for linear PP). Our experimental data confirm that presence of long chain branching in PP reduces the extent of necking and our numerical predictions show qualitative agreement with experimental data, thereby elucidating the role of chain architecture on the extent of necking. POLYM. ENG. SCI., 55:1977-1987, 2015. (c) 2014 Society of Plastics Engineer

    Environmental Analysis

    No full text
    corecore