2,135 research outputs found

    First results from simulations of supersymmetric lattices

    Get PDF
    We conduct the first numerical simulations of lattice theories with exact supersymmetry arising from the orbifold constructions of \cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the \cQ=4 theory in D=0,2D=0,2 dimensions and the \cQ=16 theory in D=0,2,4D=0,2,4 dimensions. We show that the U(N) theories do not possess vacua which are stable non-perturbatively, but that this problem can be circumvented after truncation to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum of the fermion operator and the phase of the Pfaffian arising after integration over the fermions. We monitor supersymmetry breaking effects by measuring a simple Ward identity. Our results indicate that simulations of N=4{\cal N}=4 super Yang-Mills may be achievable in the near future.Comment: 25 pages, 14 figures, 9 tables. 3 references adde

    The Flat Phase of Crystalline Membranes

    Get PDF
    We present the results of a high-statistics Monte Carlo simulation of a phantom crystalline (fixed-connectivity) membrane with free boundary. We verify the existence of a flat phase by examining lattices of size up to 1282128^2. The Hamiltonian of the model is the sum of a simple spring pair potential, with no hard-core repulsion, and bending energy. The only free parameter is the the bending rigidity κ\kappa. In-plane elastic constants are not explicitly introduced. We obtain the remarkable result that this simple model dynamically generates the elastic constants required to stabilise the flat phase. We present measurements of the size (Flory) exponent ν\nu and the roughness exponent ζ\zeta. We also determine the critical exponents η\eta and ηu\eta_u describing the scale dependence of the bending rigidity (κ(q)qη\kappa(q) \sim q^{-\eta}) and the induced elastic constants (λ(q)μ(q)qηu\lambda(q) \sim \mu(q) \sim q^{\eta_u}). At bending rigidity κ=1.1\kappa = 1.1, we find ν=0.95(5)\nu = 0.95(5) (Hausdorff dimension dH=2/ν=2.1(1)d_H = 2/\nu = 2.1(1)), ζ=0.64(2)\zeta = 0.64(2) and ηu=0.50(1)\eta_u = 0.50(1). These results are consistent with the scaling relation ζ=(2+ηu)/4\zeta = (2+\eta_u)/4. The additional scaling relation η=2(1ζ)\eta = 2(1-\zeta) implies η=0.72(4)\eta = 0.72(4). A direct measurement of η\eta from the power-law decay of the normal-normal correlation function yields η0.6\eta \approx 0.6 on the 1282128^2 lattice.Comment: Latex, 31 Pages with 14 figures. Improved introduction, appendix A and discussion of numerical methods. Some references added. Revised version to appear in J. Phys.

    Matrix formulation of superspace on 1D lattice with two supercharges

    Full text link
    Following the approach developed by some of the authors in recent papers and using a matrix representation for the superfields, we formulate an exact supersymmetric theory with two supercharges on a one dimensional lattice. In the superfield formalism supersymmetry transformations are uniquely defined and do not suffer of the ambiguities recently pointed out by some authors. The action can be written in a unique way and it is invariant under all supercharges. A modified Leibniz rule applies when supercharges act on a superfield product and the corresponding Ward identities take a modified form but hold exactly at least at the tree level, while their validity in presence of radiative corrections is still an open problem and is not considered here.Comment: 25 page

    Deformed matrix models, supersymmetric lattice twists and N=1/4 supersymmetry

    Get PDF
    A manifestly supersymmetric nonperturbative matrix regularization for a twisted version of N=(8,8) theory on a curved background (a two-sphere) is constructed. Both continuum and the matrix regularization respect four exact scalar supersymmetries under a twisted version of the supersymmetry algebra. We then discuss a succinct Q=1 deformed matrix model regularization of N=4 SYM in d=4, which is equivalent to a non-commutative A4A_4^* orbifold lattice formulation. Motivated by recent progress in supersymmetric lattices, we also propose a N=1/4 supersymmetry preserving deformation of N=4 SYM theory on R4\R^4. In this class of N=1/4 theories, both the regularized and continuum theory respect the same set of (scalar) supersymmetry. By using the equivalence of the deformed matrix models with the lattice formulations, we give a very simple physical argument on why the exact lattice supersymmetry must be a subset of scalar subalgebra. This argument disagrees with the recent claims of the link approach, for which we give a new interpretation.Comment: 47 pages, 3 figure

    Exact Vacuum Energy of Orbifold Lattice Theories

    Full text link
    We investigate the orbifold lattice theories constructed from supersymmetric Yang-Mills matrix theories (mother theories) with four and eight supercharges. We show that the vacuum energy of these theories does not receive any quantum correction perturbatively.Comment: 14 pages, no figure, LaTeX2e, typos corrected, errors in references corrected, comments adde

    A Lattice Formulation of Super Yang-Mills Theories with Exact Supersymmetry

    Full text link
    We construct super Yang-Mills theories with extended supersymmetry on hypercubic lattices of various dimensions keeping one or two supercharges exactly. Gauge fields are represented by ordinary unitary link variables, and the exact supercharges are nilpotent up to gauge transformations. Among the models, we show that the desired continuum theories are obtained without any fine tuning of parameters for the cases N=2,4,8{\cal N}=2, 4, 8 in two-dimensions.Comment: 29 pages, 1 figure, LaTeX, (v2) problem on degenerate vacua discussed, renormalization arguments modified, (v3) explanations and references added, published version in JHE

    Various Super Yang-Mills Theories with Exact Supersymmetry on the Lattice

    Full text link
    We continue to construct lattice super Yang-Mills theories along the line discussed in the previous papers \cite{sugino, sugino2}. In our construction of N=2,4{\cal N}=2, 4 theories in four dimensions, the problem of degenerate vacua seen in \cite{sugino} is resolved by extending some fields and soaking up would-be zero-modes in the continuum limit, while in the weak coupling expansion some surplus modes appear both in bosonic and fermionic sectors reflecting the exact supersymmetry. A slight modification to the models is made such that all the surplus modes are eliminated in two- and three-dimensional models obtained by dimensional reduction thereof. N=4,8{\cal N}=4, 8 models in three dimensions need fine-tuning of three and one parameters respectively to obtain the desired continuum theories, while two-dimensional models with N=4,8{\cal N}=4, 8 do not require any fine-tuning.Comment: 28 pages, no figure, LaTeX, JHEP style; (v2) published version to JHEP; (v3) argument on the vacuum degeneracy revised, 34 page

    Lattice supersymmetry, superfields and renormalization

    Full text link
    We study Euclidean lattice formulations of non-gauge supersymmetric models with up to four supercharges in various dimensions. We formulate the conditions under which the interacting lattice theory can exactly preserve one or more nilpotent anticommuting supersymmetries. We introduce a superfield formalism, which allows the enumeration of all possible lattice supersymmetry invariants. We use it to discuss the formulation of Q-exact lattice actions and their renormalization in a general manner. In some examples, one exact supersymmetry guarantees finiteness of the continuum limit of the lattice theory. As a consequence, we show that the desired quantum continuum limit is obtained without fine tuning for these models. Finally, we discuss the implications and possible further applications of our results to the study of gauge and non-gauge models.Comment: 44 pages, 1 figur

    Technicolor and Beyond: Unification in Theory Space

    Get PDF
    The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount at the enhancement of the anomalous dimension of the mass of the techniquarks allowing to decouple the Flavor Changing Neutral Currents problem from the one of the generation of the top mass. Precision data constraints are reviewed focussing on the latest crucial observation that the S-parameter can be computed exactly near the upper end of the conformal window (Conformal S-parameter) with relevant consequences on the selection of nature's next strong force. We will then introduce the Minimal Walking Technicolor (MWT) models. In the second part of this review we consider the interesting possibility to marry supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle physiscs. A surprising result is that a minimal (in terms of the smallest number of fields) supersymmetrization of the MWT model leads to the maximal supersymmetry in four dimensions, i.e. N=4 SYM.Comment: Extended version of the PASCOS10 proceedings for the Plenary Tal

    First Results from Lattice Simulation of the PWMM

    Get PDF
    We present results of lattice simulations of the Plane Wave Matrix Model (PWMM). The PWMM is a theory of supersymmetric quantum mechanics that has a well-defined canonical ensemble. We simulate this theory by applying rational hybrid Monte Carlo techniques to a naive lattice action. We examine the strong coupling behaviour of the model focussing on the deconfinement transition.Comment: v3 20 pages, 8 figures, comment adde
    corecore