51 research outputs found

    Application of Key Events Analysis to Chemical Carcinogens and Noncarcinogens

    Get PDF
    The existence of thresholds for toxicants is a matter of debate in chemical risk assessment and regulation. Current risk assessment methods are based on the assumption that, in the absence of sufficient data, carcinogenesis does not have a threshold, while noncarcinogenic endpoints are assumed to be thresholded. Advances in our fundamental understanding of the events that underlie toxicity are providing opportunities to address these assumptions about thresholds. A key events dose-response analytic framework was used to evaluate three aspects of toxicity. The first section illustrates how a fundamental understanding of the mode of action for the hepatic toxicity and the hepatocarcinogenicity of chloroform in rodents can replace the assumption of low-dose linearity. The second section describes how advances in our understanding of the molecular aspects of carcinogenesis allow us to consider the critical steps in genotoxic carcinogenesis in a key events framework. The third section deals with the case of endocrine disrupters, where the most significant question regarding thresholds is the possible additivity to an endogenous background of hormonal activity. Each of the examples suggests that current assumptions about thresholds can be refined. Understanding inter-individual variability in the events involved in toxicological effects may enable a true population threshold(s) to be identified

    The link between rejection sensitivity and borderline personality disorder:A systematic review and meta-analysis

    Get PDF
    OBJECTIVE: People with Borderline Personality Disorder (BPD) may experience heightened rejection sensitivity (RS), a disposition developing from repeated childhood rejecting experiences. It is not known whether the full RS model accounts for the cognitive-affective experiences common in BPD. This systematic review extends upon previous reviews, firstly by assessing the link between childhood rejecting experiences and adult RS, and secondly by considering the link between BPD and RS in both non-clinical and clinical samples.METHOD: Two research questions were devised, and searches based on predetermined criteria were conducted using PsycNET, PubMed, SCOPUS, and Web of Science. Data were extracted by one researcher and 20% was inter-rated, with high levels of agreement. Forty-three papers were systematically reviewed, and 31 included in meta-analysis and meta-regression.RESULTS: Studies assessing the link between childhood rejection and RS are limited; however, emotional abuse and neglect appears linked with RS. Pooled effect sizes suggest RS is linked with BPD (r = .326), with strong effect sizes when comparing clinical and control samples (r = .655). Qualitative synthesis suggests this may be mediated by executive control, although further research is required. The small number of studies considering the full RS model with regard to BPD suggests the interaction between emotional abuse and neglect affects rejection sensitivity; however, outcomes are inconsistent.CONCLUSIONS: Childhood rejection, particularly emotional abuse and neglect, appears to be linked to rejection sensitivity, and rejection sensitivity is linked to BPD. However, this may not be linear. Implications for clinical practice and research are discussed.PRACTITIONER POINTS: Rejection sensitivity is consistently linked with BPD, in clinical and non-clinical samples. Supporting mentalization or improved theory of mind may offer a therapeutic target for this disposition. Considering the causes and effects of rejection sensitivity may offer a non-blaming explanation of interpersonal difficulties in BPD and could be utilized as part of formulation and the therapeutic relationship. However, the possible interaction between emotional abuse and neglect and rejection sensitivity suggests rejection sensitivity is not always apparent for people with BPD. Idiosyncratic formulation should consider this. The literature included in the review is limited to Western populations with a high proportion of females, which may limit generalizability. Measures of rejection sensitivity included in the review were restricted to self-report, which may be subject to bias. Furthermore, measures of childhood rejection were retrospective in nature due to the exclusion of child samples. Further research should consider longitudinal and observational study designs.</p

    The Function of Cortactin in the Clustering of Acetylcholine Receptors at the Vertebrate Neuromuscular Junction

    Get PDF
    Background: Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined. Methodology/Principal Findings: In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into muscle cells potently inhibited synaptic AChR aggregation in response to innervation. Conclusion: Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream fro
    corecore