20 research outputs found

    Catalytic properties of oxide nanoparticles applied in gas sensors

    No full text
    A series of gas sensing layers based on indium oxide doped with gold were prepared by using the aerosol technology for deposition as the active contact layer in a metal oxide semiconductor capacitive device. The interaction between the measured species and the insulator surface was quantified as the voltage changes at a constant capacitance of the device. The sensor properties were investigated in the presence of H2, CO, NH3, NO, NO2 and C3H6 at temperatures between 100–400 °C. Significant differences in the morphology of the layer and its sensitivity were noted for different preparation methods and different gas environments

    Electrosynthesis and characterization of gold nanoparticles for electronic capacitance sensing of pollutants

    No full text
    In the present study, gold/surfactant core/shell colloidal nanoparticles with a controlled morphology and chemical composition have been obtained via the so-called sacrificial anode technique, carried out in galvanostatic mode. As synthesized Au-NPs had an average core diameter comprised between 4 and 8 nm, as a function of the electrochemical process experimental conditions. The UV–Vis characterization of gold nanocolloids showed clear spectroscopic size effects, affecting both the position and width of the nanoparticle surface plasmon resonance peak. The nanomaterial surface spectroscopic characterization showed the presence of two chemical states, namely nanostructured Au(0) (its abundance being higher than 90%) and Au(I). Au-NPs were then deposited on the top of a capacitive field effect sensor and subjected to a mild thermal annealing aiming at removing the excess of stabilizing surfactant molecules. Au-NP sensors were tested towards some gases found in automotive gas exhausts. The sensing device showed the largest response towards NOx, and much smaller – if any – responses towards interferent species such as NH3, H2, CO, and hydrocarbons
    corecore