591 research outputs found
Probing States in the Mott Insulator Regime
We propose a method to probe states in the Mott insulator regime produced
from a condensate in an optical lattice. We consider a system in which we
create time-dependent number fluctuations in a given site by turning off the
atomic interactions and lowering the potential barriers on a nearly pure Mott
state to allow the atoms to tunnel between sites. We calculate the expected
interference pattern and number fluctuations from such a system and show that
one can potentially observe a deviation from a pure Mott state. We also discuss
a method in which to detect these number fluctuations using time-of-flight
imaging.Comment: 4 pages, 3 figures. Send correspondence to
[email protected]
Minimizing Running Costs in Consumption Systems
A standard approach to optimizing long-run running costs of discrete systems
is based on minimizing the mean-payoff, i.e., the long-run average amount of
resources ("energy") consumed per transition. However, this approach inherently
assumes that the energy source has an unbounded capacity, which is not always
realistic. For example, an autonomous robotic device has a battery of finite
capacity that has to be recharged periodically, and the total amount of energy
consumed between two successive charging cycles is bounded by the capacity.
Hence, a controller minimizing the mean-payoff must obey this restriction. In
this paper we study the controller synthesis problem for consumption systems
with a finite battery capacity, where the task of the controller is to minimize
the mean-payoff while preserving the functionality of the system encoded by a
given linear-time property. We show that an optimal controller always exists,
and it may either need only finite memory or require infinite memory (it is
decidable in polynomial time which of the two cases holds). Further, we show
how to compute an effective description of an optimal controller in polynomial
time. Finally, we consider the limit values achievable by larger and larger
battery capacity, show that these values are computable in polynomial time, and
we also analyze the corresponding rate of convergence. To the best of our
knowledge, these are the first results about optimizing the long-run running
costs in systems with bounded energy stores.Comment: 32 pages, corrections of typos and minor omission
Effect of Media and Estrogen on Morphological Change in Candida albicans
Introduction:
Candida albicans (C. albicans), an opportunistic pathogen, lives symbiotically within the intestine of its human host. Temperature and chemical factors have been shown to induce a morphological change in C. albicans from yeast to filamentous form turning C. albicans pathogenic. In this study, we investigated the intestinal cues that might be responsible for the change. We found that different solid media impact the morphological phenotype so we focused on characterizing these before further testing. We tested Estradiol (E2) because of its known linkage to sepsis and higher levels during infections. Experiments were conducted to compare solid agar plates of YEPD, Minimal Media (MM), and Spider Media (SP) for C. albicans growth to choose the best one for further testing with E2 and other factors that could be prone to causing morphological changes.
Methods:
C. albicans was inoculated through streak method on different solid media (YEPD, MM, SP) and incubated at 30℃. The effect of 0.1nM E2 on C. albicans morphology was also tested. Morphological changes were assayed through bright-field microscopy.
Results:
Using the three different medias, we found three distinctive phenotypes: A, B, and C. Out of 6 experiments of 14 MM plates, the expressed phenotype was 86% A and 14% inconclusive of the time. 8 experiments of 17 SP plates showed 100% of phenotype B. 6 experiments of 14 YEPD plates presented phenotype C 92% of the time and 8% inconclusive. For E2 trials, 2 experiments, 6 MM plates showed 50% phenotype A and 50% inconclusive. 4 experiments, 10 SP plates had phenotype B 100%. YEPD 2 experiments, 2 plates had phenotype C at 100%.
Conclusion:
We have established experimental conditions of media controls for further testing whether E2 and other cues, such as inflammatory cytokines, have inhibitory or positive effects on the growth of C. albicans
Permissive Controller Synthesis for Probabilistic Systems
We propose novel controller synthesis techniques for probabilistic systems
modelled using stochastic two-player games: one player acts as a controller,
the second represents its environment, and probability is used to capture
uncertainty arising due to, for example, unreliable sensors or faulty system
components. Our aim is to generate robust controllers that are resilient to
unexpected system changes at runtime, and flexible enough to be adapted if
additional constraints need to be imposed. We develop a permissive controller
synthesis framework, which generates multi-strategies for the controller,
offering a choice of control actions to take at each time step. We formalise
the notion of permissivity using penalties, which are incurred each time a
possible control action is disallowed by a multi-strategy. Permissive
controller synthesis aims to generate a multi-strategy that minimises these
penalties, whilst guaranteeing the satisfaction of a specified system property.
We establish several key results about the optimality of multi-strategies and
the complexity of synthesising them. Then, we develop methods to perform
permissive controller synthesis using mixed integer linear programming and
illustrate their effectiveness on a selection of case studies
Effect of Media and Estrogen on Morphological Change in Candida albicans
Introduction:
Candida albicans (C. albicans), an opportunistic pathogen, lives symbiotically within the intestine of its human host. Temperature and chemical factors have been shown to induce a morphological change in C. albicans from yeast to filamentous form turning C. albicans pathogenic. In this study, we investigated the intestinal cues that might be responsible for the change. We found that different solid media impact the morphological phenotype so we focused on characterizing these before further testing. We tested Estradiol (E2) because of its known linkage to sepsis and higher levels during infections. Experiments were conducted to compare solid agar plates of YEPD, Minimal Media (MM), and Spider Media (SP) for C. albicans growth to choose the best one for further testing with E2 and other factors that could be prone to causing morphological changes.
Methods:
C. albicans was inoculated through streak method on different solid media (YEPD, MM, SP) and incubated at 30℃. The effect of 0.1nM E2 on C. albicans morphology was also tested. Morphological changes were assayed through bright-field microscopy.
Results:
Using the three different medias, we found three distinctive phenotypes: A, B, and C. Out of 6 experiments of 14 MM plates, the expressed phenotype was 86% A and 14% inconclusive of the time. 8 experiments of 17 SP plates showed 100% of phenotype B. 6 experiments of 14 YEPD plates presented phenotype C 92% of the time and 8% inconclusive. For E2 trials, 2 experiments, 6 MM plates showed 50% phenotype A and 50% inconclusive. 4 experiments, 10 SP plates had phenotype B 100%. YEPD 2 experiments, 2 plates had phenotype C at 100%.
Conclusion:
We have established experimental conditions of media controls for further testing whether E2 and other cues, such as inflammatory cytokines, have inhibitory or positive effects on the growth of C. albicans
Measuring Permissiveness in Parity Games: Mean-Payoff Parity Games Revisited
We study nondeterministic strategies in parity games with the aim of
computing a most permissive winning strategy. Following earlier work, we
measure permissiveness in terms of the average number/weight of transitions
blocked by the strategy. Using a translation into mean-payoff parity games, we
prove that the problem of computing (the permissiveness of) a most permissive
winning strategy is in NP intersected coNP. Along the way, we provide a new
study of mean-payoff parity games. In particular, we prove that the opponent
player has a memoryless optimal strategy and give a new algorithm for solving
these games.Comment: 30 pages, revised versio
Near-Optimal Scheduling for LTL with Future Discounting
We study the search problem for optimal schedulers for the linear temporal
logic (LTL) with future discounting. The logic, introduced by Almagor, Boker
and Kupferman, is a quantitative variant of LTL in which an event in the far
future has only discounted contribution to a truth value (that is a real number
in the unit interval [0, 1]). The precise problem we study---it naturally
arises e.g. in search for a scheduler that recovers from an internal error
state as soon as possible---is the following: given a Kripke frame, a formula
and a number in [0, 1] called a margin, find a path of the Kripke frame that is
optimal with respect to the formula up to the prescribed margin (a truly
optimal path may not exist). We present an algorithm for the problem; it works
even in the extended setting with propositional quality operators, a setting
where (threshold) model-checking is known to be undecidable
Coherent Backscattering of Ultracold Atoms
We report on the direct observation of coherent backscattering (CBS) of
ultracold atoms, in a quasi-two-dimensional configuration. Launching atoms with
a well-defined momentum in a laser speckle disordered potential, we follow the
progressive build up of the momentum scattering pattern, consisting of a ring
associated with multiple elastic scattering, and the CBS peak in the backward
direction. Monitoring the depletion of the initial momentum component and the
formation of the angular ring profile allows us to determine microscopic
transport quantities. The time resolved evolution of the CBS peak is studied
and is found a fair agreement with predictions, at long times as well as at
short times. The observation of CBS can be considered a direct signature of
coherence in quantum transport of particles in disordered media. It is
responsible for the so called weak localization phenomenon, which is the
precursor of Anderson localization.Comment: 5 pages, 4 figure
Efficient Emptiness Check for Timed B\"uchi Automata (Extended version)
The B\"uchi non-emptiness problem for timed automata refers to deciding if a
given automaton has an infinite non-Zeno run satisfying the B\"uchi accepting
condition. The standard solution to this problem involves adding an auxiliary
clock to take care of the non-Zenoness. In this paper, it is shown that this
simple transformation may sometimes result in an exponential blowup. A
construction avoiding this blowup is proposed. It is also shown that in many
cases, non-Zenoness can be ascertained without extra construction. An
on-the-fly algorithm for the non-emptiness problem, using non-Zenoness
construction only when required, is proposed. Experiments carried out with a
prototype implementation of the algorithm are reported.Comment: Published in the Special Issue on Computer Aided Verification - CAV
2010; Formal Methods in System Design, 201
- …