1,398 research outputs found
The Peierls--Nabarro FE model in two-phase microstructures -- a comparison with atomistics
This paper evaluates qualitatively as well as quantitatively the accuracy of
a recently proposed Peierls--Nabarro Finite Element (PN-FE) model for
dislocations by a direct comparison with an equivalent molecular statics
simulation. To this end, a two-dimensional microstructural specimen subjected
to simple shear is considered, consisting of a central soft phase flanked by
two hard-phase regions. A hexagonal atomic structure with equal lattice spacing
is adopted, the interactions of which are described by the Lennard--Jones
potential with phase specific depths of its energy well. During loading, edge
dislocation dipoles centred in the soft phase are introduced, which progress
towards the phase boundaries, where they pile up. Under a sufficiently high
external shear load, the leading dislocation is eventually transmitted into the
harder phase. The homogenized PN-FE model is calibrated to an atomistic model
in terms of effective elasticity constants and glide plane properties as
obtained from simple uniform deformations. To study the influence of different
formulations of the glide plane potential, multiple approaches are employed,
ranging from a simple sinusoidal function of the tangential disregistry to a
complex model that couples the influence of the tangential and the normal
disregistries. The obtained results show that, qualitatively, the dislocation
structure, displacement, strain fields, and the dislocation evolution are
captured adequately. The simplifications of the PN-FE model lead, however, to
some discrepancies within the dislocation core. Such discrepancies play a
dominant role in the dislocation transmission process, which thus cannot
quantitatively be captured properly. Despite its simplicity, the PN-FE model
proves to be an elegant tool for a qualitative study of edge dislocation
behaviour in two-phase microstructures, although it may not be quantitatively
predictive.Comment: 29 pages, 11 figures, 5 tables, abstract shortened to fulfill 1920
character limit, small changes after revie
Advances and visions in large-scale hydrological modelling: findings from the 11th Workshop on Large-Scale Hydrological Modelling
Large-scale hydrological modelling has become increasingly wide-spread during the last decade. An annual workshop series on large-scale hydrological modelling has provided, since 1997, a forum to the German-speaking community for discussing recent developments and achievements in this research area. In this paper we present the findings from the 2007 workshop which focused on advances and visions in large-scale hydrological modelling. We identify the state of the art, difficulties and research perspectives with respect to the themes "sensitivity of model results", "integrated modelling" and "coupling of processes in hydrosphere, atmosphere and biosphere". Some achievements in large-scale hydrological modelling during the last ten years are presented together with a selection of remaining challenges for the future
Race/ism in Field Education: Narratives of BIPOC Field Instructors
Field instructors are critical to enacting social work’s signature pedagogy as they are tasked with providing agency-based learning opportunities and supervision for students. It has been well-documented that field supervisors are instrumental in students’ learning and that the supervisory relationship is central to success in field education. However, there is a dearth of research regarding issues of identity, difference, race, and/or racism in these relationships, particularly from the perspective of field instructors of color. To date, we found no published literature that focuses specifically on the experiences and perspectives of Black, Indigenous, or People of Color (BIPOC) social work field instructors. The qualitative study presented here draws upon interviews and focus groups with BIPOC field instructors to better understand how race influences their role and work with students in field settings. Key findings include: 1) race and racialized experiences are primary motivations for becoming a field instructor, 2) BIPOC field instructors integrate issues of race and racism into supervision and work with students in multiple ways, and 3) BIPOC field instructors have differential experiences when supervising White students versus students of color. Recommendations for supporting racialized field instructors in their roles and future research are discussed
Electronic Shell Structure of Nanoscale Superconductors
Motivated by recent experiments on Al nanoparticles, we have studied the
effects of fixed electron number and small size in nanoscale superconductors,
by applying the canonical BCS theory for the attractive Hubbard model in two
and three dimensions. A negative ``gap'' in particles with an odd number of
electrons as observed in the experiments is obtained in our canonical scheme.
For particles with an even number of electrons, the energy gap exhibits shell
structure as a function of electron density or system size in the weak-coupling
regime: the gap is particularly large for ``magic numbers'' of electrons for a
given system size or of atoms for a fixed electron density. The grand canonical
BCS method essentially misses this feature. Possible experimental methods for
observing such shell effects are discussed.Comment: 5 pages, 5 figure
The dependence of strange hadron multiplicities on the speed of hadronization
Hadron multiplicities are calculated in the ALCOR model for the Pb+Pb
collisions at CERN SPS energy. Considering the newest experimental results, we
display our prediction obtained from the ALCOR model for stable hadrons
including strange baryons and anti-baryons.Comment: 8 pages, LaTeX in IOP style, appeared in the Proceedings of
Strangeness'97 Conference, Santorini, April 14-18 1997, J. of Physics G23
(1997) 194
Hard and soft probe - medium interactions in a 3D hydro+micro approach at RHIC
We utilize a 3D hybrid hydro+micro model for a comprehensive and consistent
description of soft and hard particle production in ultra-relativistic
heavy-ion collisions at RHIC. In the soft sector we focus on the dynamics of
(multi-)strange baryons, where a clear strangeness dependence of their
collision rates and freeze-out is observed. In the hard sector we study the
radiative energy loss of hard partons in a soft medium in the multiple soft
scattering approximation. While the nuclear suppression factor does
not reflect the high quality of the medium description (except in a reduced
systematic uncertainty in extracting the quenching power of the medium), the
hydrodynamical model also allows to study different centralities and in
particular the angular variation of with respect to the reaction
plane, allowing for a controlled variation of the in-medium path-length.Comment: 5 pages, 4 figures, Quark Matter 2006 proceedings, to appear in
Journal of Physics
The influence of DACCIWA radiosonde data on the quality of ECMWF analyses and forecasts over southern West Africa
During the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) field campaign ∼900 radiosondes were launched from 12 stations in southern West Africa from 15 June to 31 July 2016. Subsequently, data-denial experiments were conducted using the Integrated Forecasting System of the European Centre for Medium-range Weather Forecasts (ECMWF) to assess the radiosondes\u27 impact on the quality of analyses and forecasts. As observational reference, satellite-based estimates of rainfall and outgoing long-wave radiation (OLR) as well as the radiosonde measurements themselves are used. With regard to the analyses, the additional observations show positive impacts onwinds throughout the troposphere and lower stratosphere, while large lower-tropospheric cold and dry biases are hardly reduced. Nonetheless, downstream, that is farther inland from the radiosonde stations,we find a significant increase (decrease) in low-level night-time temperatures (monsoon winds) when incorporating the DACCIWA observations, suggesting a possible linkage via weaker cold air advection fromthe Gulf of Guinea. The associated lower relative humidity leads to reduced cloud cover in the DACCIWA analysis. Closer to the coast and over Benin and Togo, DACCIWA observations increase low-level specific humidity and precipitable water, possibly due to changes in advection and vertical mixing. During daytime, differences between the two analyses are generally smaller at low levels. With regard to the forecasts, the impact of the additional observations is lost after a day or less. Moderate improvements occur in low-level wind and temperature but also in rainfall over the downstream Sahel, while impacts on OLR are ambiguous. The changes in precipitation appear to also affect high-level cloud cover and the tropical easterly jet. The overall rather small observation impact suggests that model and data assimilation deficits are the main limiting factors for better forecasts inWest Africa. The new observations and physical understanding from DACCIWA can hopefully contribute to reducing these issues
A short artificial antimicrobial peptide shows potential to prevent or treat bone infections.
Infection of bone is a severe complication due to the variety of bacteria causing it, their resistance against classical antibiotics, the formation of a biofilm and the difficulty to eradicate it. Antimicrobial peptides (AMPs) are naturally occurring peptides and promising candidates for treatment of joint infections. This study aimed to analyze the effect of short artificial peptides derived from an optimized library regarding (1) antimicrobial effect on different bacterial species, (2) efficacy on biofilms, and (3) effect on osteoblast‑like cells. Culturing the AMP-modifications with Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus (including clinical isolates of MRSA and MSSA) and Staphylococcus epidermidis identified one candidate that was most effective against all bacteria. This AMP was also able to reduce biofilm as demonstrated by FISH and microcalorimetry. Osteoblast viability and differentiation were not negatively affected by the AMP. A cation concentration comparable to that physiologically occurring in blood had almost no negative effect on AMP activity and even with 10% serum bacterial growth was inhibited. Bacteria internalized into osteoblasts were reduced by the AMP. Taken together the results demonstrate a high antimicrobial activity of the AMP even against bacteria incorporated in a biofilm or internalized into cells without harming human osteoblasts
First Order Transition in the Ginzburg-Landau Model
The d-dimensional complex Ginzburg-Landau (GL) model is solved according to a
variational method by separating phase and amplitude. The GL transition becomes
first order for high superfluid density because of effects of phase
fluctuations. We discuss its origin with various arguments showing that, in
particular for d = 3, the validity of our approach lies precisely in the first
order domain.Comment: 4 pages including 2 figure
- …