90 research outputs found
Acute Inhibition of Selected Membrane-Proximal Mouse T Cell Receptor Signaling by Mitochondrial Antagonists
T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide/major histocompatibility complex (MHC) plus lymphocyte function-associated antigen 1 (LFA-1) with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS) platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour) with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin), resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s). Thus, activation of Akt and PLC-Ξ³1 and entry of extracellular Ca2+ following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption) could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours) on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function
Trauma-related emotions and radical acceptance in dialectical behavior therapy for posttraumatic stress disorder after childhood sexual abuse
Background: Posttraumatic Stress Disorder (PTSD) related to childhood sexual abuse (CSA) is often associated with a wide range of trauma-related aversive emotions such as fear, disgust, sadness, shame, guilt, and anger. Intense experience of aversive emotions in particular has been linked to higher psychopathology in trauma survivors. Most established psychosocial treatments aim to reduce avoidance of trauma-related memories and associated emotions. Interventions based on Dialectical Behavior Therapy (DBT) also foster radical acceptance of the traumatic event.
Methods: This study compares individual ratings of trauma-related emotions and radical acceptance between the start and the end of DBT for PTSD (DBT-PTSD) related to CSA. We expected a decrease in trauma-related emotions and an increase in acceptance. In addition, we tested whether therapy response according to the Clinician Administered PTSD-Scale (CAPS) for the DSM-IV was associated with changes in trauma-related emotions and acceptance. The data was collected within a randomized controlled trial testing the efficacy of DBT-PTSD, and a subsample of 23 women was included in this secondary data analysis.
Results: In a multilevel model, shame, guilt, disgust, distress, and fear decreased significantly from the start to the end of the therapy whereas radical acceptance increased. Therapy response measured with the CAPS was associated with change in trauma-related emotions.
Conclusions: Trauma-related emotions and radical acceptance showed significant changes from the start to the end of DBT-PTSD. Future studies with larger sample sizes and control group designs are needed to test whether these changes are due to the treatment.
Trial registration: ClinicalTrials.gov, number NCT0048100
Nck adapter proteins: functional versatility in T cells
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3Ξ΅ subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation
Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation
WAVE2 is a member of the WiskottβAldrich syndrome protein family of cytoskeletal regulatory proteins shown to link Rac activation to actin remodeling via induction of Arp 2/3 activity. WAVE2 is thought to be regulated by its positioning in a macromolecular complex also containing the Abelson-(Abl) interactor-1 (Abi-1) adaptor, but the molecular basis and biologic relevance of WAVE2 inclusion in this complex are ill defined. Here we show that Abi-1 binding to WAVE2 is mediated by discrete motifs in the Abi-1 coiled-coil and WAVE2 WAVE-homology domains and increases markedly in conjunction with Abi-1-WAVE2 translocation and colocalization at the leading edge in B16F1 cells after fibronectin stimulation. Abi-1 also couples WAVE2 to Abl after cell stimulation, an interaction that triggers Abl membrane translocation with WAVE2, Abi-1, and activated Rac, as well as Abl-mediated tyrosine phosphorylation and WAVE2 activation. By contrast, mutation of tyrosine residue Y150, identified here as the major site of Abl-mediated WAVE2 tyrosine phosphorylation, as well as disruption of WAVE2-Abi-1 binding, impairs induction of WAVE2-driven actin polymerization and its membrane translocation in association with activated Rac. Similarly, WAVE2 tyrosine phosphorylation and induction of membrane actin rearrangement are abrogated in fibroblasts lacking the Abl family kinase. Together, these data reveal that Abi-1-mediated coupling of Abl to WAVE2 promotes Abl-evoked WAVE2 tyrosine phosphorylation required to link WAVE2 with activated Rac and with actin polymerization and remodeling at the cell periphery
Electrochemical Investigation of the Effect of Process Parameters on the Corrosion Behavior of Aluminum-Cladded Pressure Vessel Steel Using a Friction Stir Diffusion Cladding Process
Surface cladding and coatings are commonly used to protect structures against corrosion in corrosive environments. In this paper, electrochemical properties of friction stir diffusion cladded ASTM A516-70 with corrosion-resistant aluminum alloy grade 5052 are studied. The effect of process parameters, tool rotational and traverse speeds on the corrosion behavior of produced cladded steels was comparatively assessed. Electrochemical analyses revealed that the cladded steel sample provided good corrosion protection performance in comparison with the un-cladded steel substrate following an immersion test of up to 21 days in 3.5% NaCl medium. Increasing the tool traverse speed was found to negatively affect the corrosion resistance. Optimum parameters for the selected cladding system were found to be a 500 rpm tool rotational speed, and a 50 mm/min tool traverse speed for protection against general corrosion. Meanwhile, higher traverse speed demonstrated stable passivation behavior and, therefore, lower propensity for pitting localized corrosion. Post characterization of the exposed area indicated that tool shoulder marks were favorable spots for the accumulation of corrosion products
Anticorrosion Properties of a Novel Hybrid Sol–Gel Coating on Aluminum 3003 Alloy
In this study, a novel hybrid sol–gel coating on AA3003 substrate was developed and the effects of various waste material additives on the reinforcement of the sol–gel coating and the anticorrosion properties in the saline medium were investigated. Egg shell, crumb rubber, activated carbon obtained for pyrolysis of waste rubber tire, waste rubber tire, cement kiln dust, and ST100 additives were tested as reinforcement materials. The AFM characterization results of the coating formulations on AA3003 alloy revealed enhanced roughness values for the modified coatings as compared to the base coating. Similarly, no significant changes were detected in the Fourier transform infrared spectroscopy (FTIR) absorption peaks of the hybrid polymeric material upon loading it with the waste additives, while slight changes in the hydrophobic properties of the final modified coatings were observed as a result of the modification process. Electrochemical impedance spectroscopy (EIS) results revealed that the hybrid sol–gel coating had a promising potential for the protection of the AA3003 substrate against corrosion in the saline medium. However, the loaded additives negatively affected the corrosion resistance properties of the parent hybrid sol–gel coating. For instance, the egg shell additive had the least negative effect on the barrier properties, whereas the cured coating layer of the sample loaded with cement and clay additives showed some disintegration, inhomogeneity, and low barrier properties on the metal surface
Investigating the Sorption Isotherms and Hysteresis of a Round Perforated Brick Using Newly Developed Models
This article deals with the hygrothermal behavior of round perforated brick including hysteresis effects. It aims at examining the effect of temperature on sorption isotherms and hysteresis of this product, reducing the energy consumption of the buildings, reinforcing the constructional economy and the inhabitantβs comfort as well as offering a hygrothermal description of this product that has never been previously investigated. To achieve this, we have carried out an experimental study to determine the sorption isotherms and the hysteresis in five different temperatures (10, 23, 30, 40, and 50 Β°C). Twelve equations have been tested against the experimental isotherms in order to find the optimal one. After that, three models were tested in order to develop a personal model; the latter explains the real effect of the hysteresis phenomenon on hygrothermal behavior of the studied product. To validate the mathematical model, two methods were applied to calculate the isosteric heat. The obtained results revealed a significant influence of the increase in temperature on the hygrothermal behavior in which a decrease in the equivalent water content was found. Moreover, the developed experimental model is based on Oswinβs model describing the dependence of temperature on the sorption characteristics of round perforated bricks. Furthermore, the Huang model was found to be the best compared with the other models with a regression factor (R2) of 0.990. The validation of the results using the isosteric heat parameter has confirmed that the suggested models demonstrated a perfect presentation of the sorption isotherms and the hysteresis phenomenon of the round perforated brick
- β¦