185 research outputs found
Separation of noncommutative differential calculus on quantum Minkowski space
Noncommutative differential calculus on quantum Minkowski space is not
separated with respect to the standard generators, in the sense that partial
derivatives of functions of a single generator can depend on all other
generators. It is shown that this problem can be overcome by a separation of
variables. We study the action of the universal L-matrix, appearing in the
coproduct of partial derivatives, on generators. Powers of he resulting quantum
Minkowski algebra valued matrices are calculated. This leads to a nonlinear
coordinate transformation which essentially separates the calculus. A compact
formula for general derivatives is obtained in form of a chain rule with
partial Jackson derivatives. It is applied to the massive quantum Klein-Gordon
equation by reducing it to an ordinary q-difference equation. The rest state
solution can be expressed in terms of a product of q-exponential functions in
the separated variables.Comment: 33 page
Thermal stabilization of metal matrix nanocomposites by nanocarbon reinforcements
Metal matrix composites reinforced by nanocarbon materials, such as carbon nanotubes or nanodiamonds, are very promising materials for a large number of functional and structural applications. Carbon
nanotubes and nanodiamonds-reinforced metal matrix nanocomposites with different concentrations of
the carbon phase were processed by high-pressure torsion deformation and the evolving nanostructures
were thoroughly analyzed by electron microscopy. Particular emphasis is placed on the thermal stability
of the nanocarbon reinforced metal matrix composites, which is less influenced by the amount of added
nanocarbon reinforcements than by the nanocarbon reinforcement type and its distribution in the metal
matrix
On Upward Drawings of Trees on a Given Grid
Computing a minimum-area planar straight-line drawing of a graph is known to
be NP-hard for planar graphs, even when restricted to outerplanar graphs.
However, the complexity question is open for trees. Only a few hardness results
are known for straight-line drawings of trees under various restrictions such
as edge length or slope constraints. On the other hand, there exist
polynomial-time algorithms for computing minimum-width (resp., minimum-height)
upward drawings of trees, where the height (resp., width) is unbounded.
In this paper we take a major step in understanding the complexity of the
area minimization problem for strictly-upward drawings of trees, which is one
of the most common styles for drawing rooted trees. We prove that given a
rooted tree and a grid, it is NP-hard to decide whether
admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs
We present a prototype of a software tool for exploration of multiple
combinatorial optimisation problems in large real-world and synthetic complex
networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial
Explorer), provides a unified framework for scalable computation and
presentation of high-quality suboptimal solutions and bounds for a number of
widely studied combinatorial optimisation problems. Efficient representation
and applicability to large-scale graphs and complex networks are particularly
considered in its design. The problems currently supported include maximum
clique, graph colouring, maximum independent set, minimum vertex clique
covering, minimum dominating set, as well as the longest simple cycle problem.
Suboptimal solutions and intervals for optimal objective values are estimated
using scalable heuristics. The tool is designed with extensibility in mind,
with the view of further problems and both new fast and high-performance
heuristics to be added in the future. GraphCombEx has already been successfully
used as a support tool in a number of recent research studies using
combinatorial optimisation to analyse complex networks, indicating its promise
as a research software tool
Novel kinetoplastid-specific cAMP binding proteins identified by RNAi screening for cAMP resistance in Trypanosoma brucei
Cyclic AMP signalling in trypanosomes differs from most eukaryotes due to absence of known cAMP effectors and cAMP independence of PKA. We have previously identified four genes from a genome-wide RNAi screen for resistance to the cAMP phosphodiesterase (PDE) inhibitor NPD-001. The genes were named cAMP Response Protein (CARP) 1 through 4. Here, we report an additional six CARP candidate genes from the original sample, after deep sequencing of the RNA interference target pool retrieved after NPD-001 selection (RIT-seq). The resistance phenotypes were confirmed by individual RNAi knockdown. Highest level of resistance to NPD-001, approximately 17-fold, was seen for knockdown of CARP7 (Tb927.7.4510). CARP1 and CARP11 contain predicted cyclic AMP binding domains and bind cAMP as evidenced by capture and competition on immobilised cAMP. CARP orthologues are strongly enriched in kinetoplastid species, and CARP3 and CARP11 are unique to Trypanosoma. Localization data and/or domain architecture of all CARPs predict association with the T. brucei flagellum. This suggests a crucial role of cAMP in flagellar function, in line with the cell division phenotype caused by high cAMP and the known role of the flagellum for cytokinesis. The CARP collection is a resource for discovery of unusual cAMP pathways and flagellar biology
Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA.
One of the most promising new targets for trypanocidal drugs to emerge in recent years is the cyclic AMP (cAMP) phosphodiesterase (PDE) activity encoded by TbrPDEB1 and TbrPDEB2. These genes were genetically confirmed as essential, and a high-affinity inhibitor, CpdA, displays potent antitrypanosomal activity. To identify effectors of the elevated cAMP levels resulting from CpdA action and, consequently, potential sites for adaptations giving resistance to PDE inhibitors, resistance to the drug was induced. Selection of mutagenized trypanosomes resulted in resistance to CpdA as well as cross-resistance to membrane-permeable cAMP analogues but not to currently used trypanocidal drugs. Resistance was not due to changes in cAMP levels or in PDEB genes. A second approach, a genome-wide RNA interference (RNAi) library screen, returned four genes giving resistance to CpdA upon knockdown. Validation by independent RNAi strategies confirmed resistance to CpdA and suggested a role for the identified cAMP Response Proteins (CARPs) in cAMP action. CARP1 is unique to kinetoplastid parasites and has predicted cyclic nucleotide binding-like domains, and RNAi repression resulted in >100-fold resistance. CARP2 and CARP4 are hypothetical conserved proteins associated with the eukaryotic flagellar proteome or with flagellar function, with an orthologue of CARP4 implicated in human disease. CARP3 is a hypothetical protein, unique to Trypanosoma. CARP1 to CARP4 likely represent components of a novel cAMP signaling pathway in the parasite. As cAMP metabolism is validated as a drug target in Trypanosoma brucei, cAMP effectors highly divergent from the mammalian host, such as CARP1, lend themselves to further pharmacological development
DOK3 Negatively Regulates LPS Responses and Endotoxin Tolerance
Innate immune activation via Toll-like receptors (TLRs), although critical for host defense against infection, must be regulated to prevent sustained cell activation that can lead to cell death. Cells repeatedly stimulated with lipopolysaccharide (LPS) develop endotoxin tolerance making the cells hypo-responsive to additional TLR stimulation. We show here that DOK3 is a negative regulator of TLR signaling by limiting LPS-induced ERK activation and cytokine responses in macrophages. LPS induces ubiquitin-mediated degradation of DOK3 leading to SOS1 degradation and inhibition of ERK activation. DOK3 mice are hypersensitive to sublethal doses of LPS and have altered cytokine responses in vivo. During endotoxin tolerance, DOK3 expression remains stable, and it negatively regulates the expression of SHIP1, IRAK-M, SOCS1, and SOS1. As such, DOK3-deficient macrophages are more sensitive to LPS-induced tolerance becoming tolerant at lower levels of LPS than wild type cells. Taken together, the absence of DOK3 increases LPS signaling, contributing to LPS-induced tolerance. Thus, DOK3 plays a role in TLR signaling during both naïve and endotoxin-induced tolerant conditions
Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro
The ability to reproduce the developmental events of trypanosomes that occur in their mammalian host in vitro offers significant potential to assist in understanding of the underlying biology of the process. For example, the transition from bloodstream slender to bloodstream stumpy forms is a quorum-sensing response to the parasite-derived peptidase digestion products of environmental proteins. As an abundant physiological substrate in vivo, we studied the ability of a basement membrane matrix enriched gel (BME) in the culture medium to support differentiation of pleomorphic Trypanosoma brucei to stumpy forms. BME comprises extracellular matrix proteins, which are among the most abundant proteins found in connective tissues in mammals and known substrates of parasite-released peptidases. We previously showed that two of these released peptidases are involved in generating a signal that promotes slender-to-stumpy differentiation. Here, we tested the ability of basement membrane extract to enhance parasite differentiation through its provision of suitable substrates to generate the quorum sensing signal, namely oligopeptides. Our results show that when grown in the presence of BME, T. brucei pleomorphic cells arrest at the G0/1 phase of the cell cycle and express the differentiation marker PAD1, the response being restricted to differentiation-competent parasites. Further, the stumpy forms generated in BME medium are able to efficiently proceed onto the next life cycle stage in vitro, procyclic forms, when incubated with cis-aconitate, further validating the in vitro BME differentiation system. Hence, BME provides a suitable in vitro substrate able to accurately recapitulate physiological parasite differentiation without the use of experimental animals
Non-detection of Chlamydia species in carotid atheroma using generic primers by nested PCR in a population with a high prevalence of Chlamydia pneumoniae antibody
BACKGROUND: The association of Chlamydia pneumoniae with atherosclerosis is controversial. We investigated the presence of C. pneumoniae and other Chlamydia spp. in atheromatous carotid artery tissue. METHODS: Forty elective carotid endarterectomy patients were recruited (27 males, mean age 65 and 13 females mean age 68), 4 had bilateral carotid endarterectomies (n= 44 endarterectomy specimens). Control specimens were taken from macroscopically normal carotid artery adjacent to the atheromatous lesions (internal controls), except in 8 cases where normal carotid arteries from post mortem (external controls) were used. Three case-control pairs were excluded when the HLA DRB gene failed to amplify from the DNA. Genus specific primers to the major outer membrane protein (MOMP) gene were used in a nested polymerase chain reaction (nPCR) in 41 atheromatous carotid specimens and paired controls. PCR inhibition was monitored by spiking with target C. trachomatis. Atheroma severity was graded histologically. Plasma samples were tested by microimmunofluorescence (MIF) for antibodies to C. pneumoniae, C. trachomatis and C. psittaci and the corresponding white cells were tested for Chlamydia spp. by nPCR. RESULTS: C. pneumoniae was not detected in any carotid specimen. Twenty-five of 38 (66%) plasma specimens were positive for C. pneumoniae IgG, 2/38 (5%) for C. trachomatis IgG and 1/38 (3%) for C. psittaci IgG. CONCLUSIONS: We were unable to show an association between the presence of Chlamydia spp. and atheroma in carotid arteries in the presence of a high seroprevalence of C. pneumoniae antibodies in Northern Ireland
- …