33 research outputs found
Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding
The dual-analyte responsive behavior of tetraTTF-calix[4]pyrrole receptor 1 has been shown to complex electron-deficient planar guests in a 2:1 fashion by adopting a so-called 1,3-alternate conformation. However, stronger 1:1 complexes have been demonstrated with tetraalkylammonium halide salts that defer receptor 1 to its cone conformation. Herein, we report the complexation of an electron-deficient planar guest, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA, 2) that champions the complexation with 1, resulting in a high association constant Ka = 3 Ă 1010 Mâ2. The tetrathiafulvalene (TTF) subunits in the tetraTTF-calix[4]pyrrole receptor 1 present a near perfect shape and electronic complementarity to the NTCDA guest, which was confirmed by X-ray crystal structure analysis, DFT calculations, and electron density surface mapping. Moreover, the complexation of these species results in the formation of a charge transfer complex (22â1) as visualized by a readily apparent color change from yellow to brown
Etiological involvement of KCND1 variants in an X-linked neurodevelopmental disorder with variable expressivity
Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ÎČ subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.</p
Etiological involvement of KCND1 variants in an X-linked neurodevelopmental disorder with variable expressivity
Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ÎČ subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype.</p
Etiological involvement of KCND1 variants in an X-linked neurodevelopmental disorder with variable expressivity
Utilizing trio whole-exome sequencing and a gene matching approach, we identified a cohort of 18 male individuals from 17 families with hemizygous variants in KCND1, including two de novo missense variants, three maternally inherited protein-truncating variants, and 12 maternally inherited missense variants. Affected subjects present with a neurodevelopmental disorder characterized by diverse neurological abnormalities, mostly delays in different developmental domains, but also distinct neuropsychiatric signs and epilepsy. Heterozygous carrier mothers are clinically unaffected. KCND1 encodes the α-subunit of Kv4.1 voltage-gated potassium channels. All variant-associated amino acid substitutions affect either the cytoplasmic N- or C-terminus of the channel protein except for two occurring in transmembrane segments 1 and 4. Kv4.1 channels were functionally characterized in the absence and presence of auxiliary ÎČ subunits. Variant-specific alterations of biophysical channel properties were diverse and varied in magnitude. Genetic data analysis in combination with our functional assessment shows that Kv4.1 channel dysfunction is involved in the pathogenesis of an X-linked neurodevelopmental disorder frequently associated with a variable neuropsychiatric clinical phenotype
Reorganization of inter-chromosomal interactions in the 2q37-deletion syndrome
Chromosomes occupy distinct interphase territories in the three-dimensional nucleus. However, how these chromosome territories are arranged relative to one another is poorly understood. Here, we investigated the inter-chromosomal interactions between chromosomes 2q, 12, and 17 in human mesenchymal stem cells (MSCs) and MSC-derived cell types by DNA-FISH We compared our findings in normal karyotypes with a three-generation family harboring a 2q37-deletion syndrome, featuring a heterozygous partial deletion of histone deacetylase 4 (HDAC4) on chr2q37. In normal karyotypes, we detected stable, recurring arrangements and interactions between the three chromosomal territories with a tissue-specific interaction bias at certain loci. These inter-chromosomal interactions were confirmed by Hi-C. Interestingly, the disease-related HDAC4 deletion resulted in displaced inter-chromosomal arrangements and altered interactions between the deletion-affected chromosome 2 and chromosome 12 and/or 17 in 2q37-deletion syndrome patients. Our findings provide evidence for a direct link between a structural chromosomal aberration and altered interphase architecture that results in a nuclear configuration, supporting a possible molecular pathogenesis