148 research outputs found

    Study of the distribution of Malassezia species in patients with pityriasis versicolor and healthy individuals in Tehran, Iran

    Get PDF
    BACKGROUND: Pityriasis versicolor is a superficial infection of the stratum corneum which caused by a group of yeasts formerly named pityrosporium. The taxonomy of these lipophilic yeasts has recently been modified and includes seven species referred as Malassezia. The aim of this study is to compare the distribution of Malassezia species isolated from pityriasis versicolor lesions and those isolated from healthy skins. METHODS: Differentiation of all malassezia species performed using morphological features and physiological test including catalase reaction, Tween assimilation test and splitting of esculin. RESULTS: In pityriasis versicolor lesions, the most frequently isolated species was M. globosa (53.3%), followed by M. furfur (25.3%), M. sympodialis(9.3%), M. obtusa (8.1%) and M. slooffiae (4.0%). The most frequently isolated species in the skin of healthy individuals were M. globosa, M. sympodialis, M. furfur, M. sloofiae and M. restricta which respectively made up 41.7%, 25.0%, 23.3%, 6.7% and 3.3% of the isolated species. CONCLUSIONS: According to our data, M. globosa was the most prevalent species in the skin of healthy individuals which recovered only in the yeast form. However, the Mycelial form of M. globosa was isolated as the dominant species from pityriasis versicolor lesions. Therefore, the role of predisposing factors in the conversion of this yeast to mycelium and its subsequent involvement in pityriasis versicolor pathogenicity should be considered

    Clinical Pharmacokinetics and Dose Recommendations for Posaconazole in Infants and Children.

    Get PDF
    OBJECTIVES: The objectives of this study were to investigate the population pharmacokinetics of posaconazole in immunocompromised children, evaluate the influence of patient characteristics on posaconazole exposure and perform simulations to recommend optimal starting doses. METHODS: Posaconazole plasma concentrations from paediatric patients undergoing therapeutic drug monitoring were extracted from a tertiary paediatric hospital database. These were merged with covariates collected from electronic sources and case-note reviews. An allometrically scaled population-pharmacokinetic model was developed to investigate the effect of tablet and suspension relative bioavailability, nonlinear bioavailability of suspension, followed by a step-wise covariate model building exercise to identify other important sources of variability. RESULTS: A total of 338 posaconazole plasma concentrations samples were taken from 117 children aged 5 months to 18 years. A one-compartment model was used, with tablet apparent clearance standardised to a 70-kg individual of 15 L/h. Suspension was found to have decreasing bioavailability with increasing dose; the estimated suspension dose to yield half the tablet bioavailability was 99 mg/m2. Diarrhoea and proton pump inhibitors were also associated with reduced suspension bioavailability. CONCLUSIONS: In the largest population-pharmacokinetic study to date in children, we have found similar covariate effects to those seen in adults, but low bioavailability of suspension in patients with diarrhoea or those taking concurrent proton pump inhibitors, which may in particular limit the use of posaconazole in these patients

    Selective C-Rel Activation via Malt1 Controls Anti-Fungal TH-17 Immunity by Dectin-1 and Dectin-2

    Get PDF
    C-type lectins dectin-1 and dectin-2 on dendritic cells elicit protective immunity against fungal infections through induction of TH1 and TH-17 cellular responses. Fungal recognition by dectin-1 on human dendritic cells engages the CARD9-Bcl10-Malt1 module to activate NF-κB. Here we demonstrate that Malt1 recruitment is pivotal to TH-17 immunity by selective activation of NF-κB subunit c-Rel, which induces expression of TH-17-polarizing cytokines IL-1β and IL-23p19. Malt1 inhibition abrogates c-Rel activation and TH-17 immunity to Candida species. We found that Malt1-mediated activation of c-Rel is similarly essential to induction of TH-17-polarizing cytokines by dectin-2. Whereas dectin-1 activates all NF-κB subunits, dectin-2 selectively activates c-Rel, signifying a specialized TH-17-enhancing function for dectin-2 in anti-fungal immunity by human dendritic cells. Thus, dectin-1 and dectin-2 control adaptive TH-17 immunity to fungi via Malt1-dependent activation of c-Rel

    Dermatite seborreica

    Full text link

    Stacking faults in uranium dioxide

    No full text
    • …
    corecore