476 research outputs found

    Comment on "Impact of a Global Quadratic Potential on Galactic Rotation Curves"

    Full text link
    Conformal gravity theory can explain observed flat rotation curves of galaxies without invoking hypothetical dark matter. Within this theory, we obtain a generic formula for the sizes of galaxies exploiting the stability criterion of circular orbits. It is found that different galaxies have different finite sizes uniquely caused by the assumed quadratic potential of cosmological origin. Observations on where circular orbits might actually terminate could thus be very instructive in relation to the galactic sizes predicted here.Comment: 2 page

    Complete absence of localization in a family of disordered lattices

    Full text link
    We present analytically exact results to show that, certain quasi one-dimensional lattices where the building blocks are arranged in a random fashion, can have an absolutely continuous part in the energy spectrum when special correlations are introduced among some of the parameters describing the corresponding Hamiltonians. We explicitly work out two prototype cases, one being a disordered array of a simple diamond network and isolated dots, and the other an array of triangular plaquettes and dots. In the latter case, a magnetic flux threading each plaquette plays a crucial role in converting the energy spectrum into an absolutely continuous one. A flux controlled enhancement in the electronic transport is an interesting observation in the triangle-dot system that may be useful while considering prospective devices. The analytical findings are comprehensively supported by extensive numerical calculations of the density of states and transmission coefficient in each case.Comment: 6 pages, 6 figures, epl draf

    Magneto-transport in a mesoscopic ring with Rashba and Dresselhaus spin-orbit interactions

    Full text link
    Electronic transport in a one-dimensional mesoscopic ring threaded by a magnetic flux is studied in presence of Rashba and Dresselhaus spin-orbit interactions. A completely analytical technique within a tight-binding formalism unveils the spin-split bands in presence of the spin-orbit interactions and leads to a method of determining the strength of the Dresselhaus interaction. In addition to this, the persistent currents for ordered and disordered rings have been investigated numerically. It is observed that, the presence of the spin-orbit interaction, in general, leads to an enhanced amplitude of the persistent current. Numerical results corroborate the respective analytical findings.Comment: 7 pages, 7 figure

    Metal-insulator transition in an aperiodic ladder network: an exact result

    Full text link
    We show, in a completely analytical way, that a tight binding ladder network composed of atomic sites with on-site potentials distributed according to the quasiperiodic Aubry model can exhibit a metal-insulator transition at multiple values of the Fermi energy. For specific values of the first and second neighbor electron hopping, the result is obtained exactly. With a more general model, we calculate the two-terminal conductance numerically. The numerical results corroborate the analytical findings and yield a richer variety of spectrum showing multiple mobility edges.Comment: 4 pages, 3 figure
    • …
    corecore