65 research outputs found

    Electrospun nanofiber membranes as ultrathin flexible supercapacitors

    Get PDF
    A highly flexible electrochemical supercapacitor electrode was developed with a novel metal oxide-reinforced nanofiber electrode by utilizing a solution-based electrospinning technique. The facile fabrication steps involved the introduction of metal precursors into a polymeric solution, which was subjected to an in situ electrospinning process. The electrospun polymeric web with metallic ingredients was then subjected to an oxidative stabilization process that induced the formation of metal oxide nanoparticles within the polymer structure. Finally, the metal oxide nanoparticles incorporated with nanofibers were obtained using a carbonization process, thus converting the polymer backbones into a carbon-rich conductive nanofiber structure. The fabricated nanofibers were decorated and implanted with metal oxide nanoparticles that had a surface-decorated structure morphology due to the solubility of the precursors in the reaction solution. The electrochemical performance of the fabricated metal oxide reinforced with nanofiber electrodes was investigated as an electrochemical system, and the novel morphology significantly improved the specific capacitance compared to a pristine carbon nanofiber membrane. As a result of the uniform dispersion of metal oxide nanoparticles throughout the surface of the nanofibers, the overall capacitive behavior of the membrane was enhanced. Furthermore, a fabricated free-standing flexible device that utilized the optimized nanofiber electrode demonstrated high stability even after it was subjected to various bending operations and curvatures. These promising results showed the potential applications of these lightweight, conductive nanofiber electrodes in flexible and versatile electronic devices

    Preoperative induction chemotherapy with cisplatin and irinotecan for pathological N2 non-small cell lung cancer

    Get PDF
    We conducted a phase I/II study to investigate whether the surgical resection after induction chemotherapy with cisplatin and irinotecan was feasible and could improve the treatment outcome for patients with pathological N2 non-small cell lung cancer. Fifteen patients with stage IIIA non-small cell lung cancer having mediastinal lymph node metastases proved by mediastinoscopy were eligible. Both cisplatin (60 mg m−2) and irinotecan (50 mg m−2) were given on days 1 and 8. Patients received two cycles of chemotherapy after 3–4 weeks interval. Induction was followed by surgical resection in 4–6 weeks. Patients who had documented tumour regression after preoperative chemotherapy received two additional cycles of chemotherapy and other patients received radiotherapy postoperatively. After the induction chemotherapy, the objective response rate was 73%. All the 15 patients received surgical resection and complete resection was achieved in 11 (73%) patients. There was no operation-related death and one death due to radiation pneumonitis during postoperative radiotherapy. The median time from entry to final analysis was 46.5 months, ranging from 22 to 68 months. The 5-year survival rate was 40% for all the 15 patients and it was 55% for the 11 patients who underwent complete resection. We conclude that the surgical resection after induction chemotherapy with cisplatin and irinotecan is feasible, and associated with low morbidity and high respectability

    Intersubject and intrasubject variability of potential plasma and urine metabolite and protein biomarkers in healthy human volunteers

    Get PDF
    A limited understanding of intersubject and intrasubject variability hampers effective biomarker translation from in vitro/in vivo studies to clinical trials and clinical decision support. Specifically, variability of biomolecule concentration can play an important role in interpretation, power analysis, and sampling time designation. In the present study, a wide range of 749 plasma metabolites, 62 urine biogenic amines, and 1,263 plasma proteins were analyzed in 10 healthy male volunteers measured repeatedly during 12 hours under tightly controlled conditions. Three variability components in relative concentration data are determined using linear mixed models: between (intersubject), time (intrasubject), and noise (intrasubject). Biomolecules such as 3-carboxy-4-methyl-5-propyl-2-furanpropanoate, platelet-derived growth factor C, and cathepsin D with low noise potentially detect changing conditions within a person. If also the between component is low, biomolecules can easier differentiate conditions between persons, for example cathepsin D, CD27 antigen, and prolylglycine. Variability over time does not necessarily inhibit translatability, but requires choosing sampling times carefully.Analytical BioScience

    Histamine Derived from Probiotic Lactobacillus reuteri Suppresses TNF via Modulation of PKA and ERK Signaling

    Get PDF
    Beneficial microbes and probiotic species, such as Lactobacillus reuteri, produce biologically active compounds that can modulate host mucosal immunity. Previously, immunomodulatory factors secreted by L. reuteri ATCC PTA 6475 were unknown. A combined metabolomics and bacterial genetics strategy was utilized to identify small compound(s) produced by L. reuteri that were TNF-inhibitory. Hydrophilic interaction liquid chromatography-high performance liquid chromatography (HILIC-HPLC) separation isolated TNF-inhibitory compounds, and HILIC-HPLC fraction composition was determined by NMR and mass spectrometry analyses. Histamine was identified and quantified in TNF-inhibitory HILIC-HPLC fractions. Histamine is produced from L-histidine via histidine decarboxylase by some fermentative bacteria including lactobacilli. Targeted mutagenesis of each gene present in the histidine decarboxylase gene cluster in L. reuteri 6475 demonstrated the involvement of histidine decarboxylase pyruvoyl type A (hdcA), histidine/histamine antiporter (hdcP), and hdcB in production of the TNF-inhibitory factor. The mechanism of TNF inhibition by L. reuteri-derived histamine was investigated using Toll-like receptor 2 (TLR2)-activated human monocytoid cells. Bacterial histamine suppressed TNF production via activation of the H2 receptor. Histamine from L. reuteri 6475 stimulated increased levels of cAMP, which inhibited downstream MEK/ERK MAPK signaling via protein kinase A (PKA) and resulted in suppression of TNF production by transcriptional regulation. In summary, a component of the gut microbiome, L. reuteri, is able to convert a dietary component, L-histidine, into an immunoregulatory signal, histamine, which suppresses pro-inflammatory TNF production. The identification of bacterial bioactive metabolites and their corresponding mechanisms of action with respect to immunomodulation may lead to improved anti-inflammatory strategies for chronic immune-mediated diseases

    Electrospun Nanofiber Membranes as Ultrathin Flexible Supercapacitors

    Get PDF
    A highly flexible electrochemical supercapacitor electrode was developed with a novel metal oxide-reinforced nanofiber electrode by utilizing a solution-based electrospinning technique. The facile fabrication steps involved the introduction of metal precursors into a polymeric solution, which was subjected to an in situ electrospinning process. The electrospun polymeric web with metallic ingredients was then subjected to an oxidative stabilization process that induced the formation of metal oxide nanoparticles within the polymer structure. Finally, the metal oxide nanoparticles incorporated with nanofibers were obtained using a carbonization process, thus converting the polymer backbones into a carbon-rich conductive nanofiber structure. The fabricated nanofibers were decorated and implanted with metal oxide nanoparticles that had a surface-decorated structure morphology due to the solubility of the precursors in the reaction solution. The electrochemical performance of the fabricated metal oxide reinforced with nanofiber electrodes was investigated as an electrochemical system, and the novel morphology significantly improved the specific capacitance compared to a pristine carbon nanofiber membrane. As a result of the uniform dispersion of metal oxide nanoparticles throughout the surface of the nanofibers, the overall capacitive behavior of the membrane was enhanced. Furthermore, a fabricated free-standing flexible device that utilized the optimized nanofiber electrode demonstrated high stability even after it was subjected to various bending operations and curvatures. These promising results showed the potential applications of these lightweight, conductive nanofiber electrodes in flexible and versatile electronic devices
    corecore