5 research outputs found

    Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue

    Get PDF
    Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD

    Plasmid-based high-resolution melting analysis for accurate detection of rpoB mutations in Mycobacterium tuberculosis isolates from Moroccan patients

    Get PDF
    Abstract Background Rapid diagnosis of drug resistance in tuberculosis (TB) is pivotal for the timely initiation of effective antibiotic treatment to prevent the spread of drug-resistant strains. The development of low-cost, rapid and robust methods for drug-resistant TB detection is highly desirable for resource-limited settings. Methods We report the use of an in house plasmid-based quantitative polymerase chain reaction-high-resolution melting (qPCR-HRM) analysis for the detection of mutations related to rifampicin-resistant Mycobacterium tuberculosis (MTB) in clinical isolates from Moroccan patients. Five recombinant plasmids containing predominant mutations (S531L, S531W, H526Y and D516V) and the wild-type sequence of the Rifampicin Resistance-Determining Region (RRDR) have been used as controls to screen 45 rifampicin-resistant and 22 rifampicin-susceptible MTB isolates. Results The sensitivity and the specificity of the qPCR-HRM analysis were 88.8% and 100% respectively as compared to rifampicin Drug Susceptibility Testing (DST). The results of qPCR-HRM and DNA sequencing had a concordance of 100%. Conclusion Our qPCR-HRM assay is a sensitive, accurate and cost-effective assay for the high-throughput screening of mutation-based drug resistance in TB reference laboratories
    corecore