13 research outputs found

    Analysis Techniques of Polymeric Encapsulant Materials for Photovoltaic Modules: Situation and Perspectives

    Get PDF
    AbstractThe properties of the encapsulant are critical to the long-term performance of photovoltaic (PV) modules under the influence of sunlight including UV, elevated temperature, humidity and diffusion of oxygen. Encapsulation process represents about 40% of the whole PV module cost. The introduction of new non-EVA encapsulant material type ″Low-Cost, High-Performance″ should provide a solution to outdoor yellowing degradation problems. The emerging encapsulant materials exhibit a good compatibility with emerging PV solar cells for long term durability. This new generation of encapsulant materials has the advantage to improve the PV module performances and long term durability for specific climate like desert regions. This scientific contribution presents an overview of the different encapsulant materials currently on the market, the general requirements of the emerging encapsulant materials and characterizations techniques for degradation, diagnostic and reliability lifetime estimation in the framework of Algerian renewable energy strategy

    Solar cell degradation under open circuit condition in out-doors-in desert region

    Get PDF
    AbstractThe reliability of solar cells is an important parameter in the design of photovoltaic systems and particularly for cost estimation. Solar cell degradation is the result of various operating conditions; temperature is one of most important factors. Installed PV modules in desert regions are subjected to various temperature changes with significant gradient leading to accelerated degradation. In the present work, we demonstrate the influence of open-circuit condition on the degradation of PV modules. The experiment is carried out in the desert region of ADRAR (southern Algeria) using two modules IJISEL of single-crystal silicon. A continuous monitoring allows analysis of both performances of modules for duration of 330days. The module in open-circuit condition reaches higher temperature means than the module in charging condition; therefore, it undergoes a higher degradation. By simulation, we found that the life of a PV module (whose power output is close to 50%) in a condition of an open-circuit in the desert region could be reduced to 4years, and that has a significant impact on economy

    Effect of Rare Earth Ions on the Properties of Composites Composed of Ethylene Vinyl Acetate Copolymer and Layered Double Hydroxides

    Get PDF
    BACKGROUND: The study on the rare earth (RE)-doped layered double hydroxides (LDHs) has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. METHODOLOGY/PRINCIPAL FINDINGS: The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA)/LDHs composites were also explored in detail. CONCLUSIONS/SIGNIFICANCE: S-Ni₀.₁MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni₀.₁MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites
    corecore