5 research outputs found

    Direct measurement of the intrinsic electric dipole moment in pear-shaped thorium-228

    Get PDF
    Atomic nuclei with certain combinations of proton and neutron numbers can adopt reflection-asymmetric or octupole-deformed shapes at low excitation energy. These nuclei present a promising avenue in the search for a permanent atomic electric dipole moment—the existence of which has implications for physics beyond the Standard Model of particle physics. Theoretical studies have suggested that certain thorium isotopes may have large octupole deformation. However, due to experimental challenges, the extent of the octupole collectivity in the low-energy states in these thorium nuclei has not yet been demonstrated. Here, we report measurements of the lifetimes of low-energy states in 228Th (Z = 90) with a direct electronic fast-timing technique, the mirror symmetric centroid difference method. From lifetime measurements of the low-lying Jπ = 1− and Jπ = 3− states, the E1 transition probability rates and the intrinsic dipole moment are determined. The results are in agreement with those of previous theoretical calculations, allowing us to estimate the extent of the octupole deformation of 228Th. This study indicates that the nuclei 229Th and 229Pa (Z = 91) may be good candidates for the search for a permanent atomic electric dipole moment

    EGAF: Measurement and Analysis of Gamma-ray Cross Sections

    Full text link
    The Evaluated Gamma-ray Activation File (EGAF) is the result of a 2000–2007 IAEA Coordinated Research Project to develop a database of thermal, prompt γ -ray cross sections, σγσγ, for all elemental and selected radioactive targets. No previous database of this kind had existed. EGAF was originally based on measurements using guided neutron beams from the Budapest Reactor on all elemental targets from Z=1–82, 90 and 92, except for He and Pm. The EGAF σγσγ data were published in the Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis [1]. An international collaboration has formed to continue the EGAF measurements with isotopically enriched targets, derive total radiative thermal neutron cross sections, σ0σ0, extend the σγσγ data from thermal to 20 MeV neutrons, compile a completed activation data file, improve sections of the Reference Input Parameter Library (RIPL) with more complete and up to date level and γ-ray data, evaluate statistical γ -ray data from reaction studies, and determine recommended neutron separations energies, Snn, for atomic mass evaluations. A new guided neutron beam facility has become available at the Garching (Munich) FRM II Reactor, and high energy neutron experimental facilities are being developed by a Berkeley area collaboration where 5–33 MeV neutron beams are available at the LBNL 88” cyclotron, 2.5 and 14 MeV beams at the University of California, Berkeley neutron generator laboratory, and high flux, 1027–331027–33 n⋅cmView the MathML source⋅−2 s−1−1, neutron pulses available from the LLNL National Ignition Facility (NIF)

    Proceedings of First Conference for Engineering Sciences and Technology: Vol. 1

    Full text link
    This volume contains contributed articles of Track 1, Track 2 & Track 3, presented in the conference CEST-2018, organized by Faculty of Engineering Garaboulli, and Faculty of Engineering, Al-khoms, Elmergib University (Libya) on 25-27 September 2018. Track 1: Communication and Information Technology Track 2: Electrical and Electronics Engineering Track 3: Oil and Chemical Engineering Other articles of Track 4, 5 & 6 have been published in volume 2 of the proceedings at this lin
    corecore