3,166 research outputs found

    Representation Dependence of Superficial Degree of Divergences in Quantum Field Theory

    Full text link
    In this work, we investigate a very important but unstressed result in the work of Carl M. Bender, Jun-Hua Chen, and Kimball A. Milton ( J.Phys.A39:1657-1668, 2006). In this article, Bender \textit{et.al} have calculated the vacuum energy of the iϕ3i\phi^{3} scalar field theory and its Hermitian equivalent theory up to g4g^{4} order of calculations. While all the Feynman diagrams of the iϕ3i\phi^{3} theory are finite in 0+10+1 space-time dimensions, some of the corresponding Feynman diagrams in the equivalent Hermitian theory are divergent. In this work, we show that the divergences in the Hermitian theory originate from superrenormalizable, renormalizable and non-renormalizable terms in the interaction Hamiltonian even though the calculations are carried out in the 0+10+1 space-time dimensions. Relying on this interesting result, we raise the question, is the superficial degree of divergence of a theory is representation dependent? To answer this question, we introduce and study a class of non-Hermitian quantum field theories characterized by a field derivative interaction Hamiltonian. We showed that the class is physically acceptable by finding the corresponding class of metric operators in a closed form. We realized that the obtained equivalent Hermitian and the introduced non-Hermitian representations have coupling constants of different mass dimensions which may be considered as a clue for the possibility of considering non-Renormalizability of a field theory as a non-genuine problem. Besides, the metric operator is supposed to disappear from path integral calculations which means that physical amplitudes can be fully obtained in the simpler non-Hermitian representation.Comment: 14 pages one figure. The title has been change

    Physical properties of thermoelectric zinc antimonide using first-principles calculations

    Full text link
    We report first principles calculations of the structural, electronic, elastic and vibrational properties of the semiconducting orthorhombic ZnSb compound. We study also the intrinsic point defects in order to eventually improve the thermoelectric properties of this already very promising thermoelectric material. Concerning the electronic properties, in addition to the band structure, we show that the Zn (Sb) crystallographically equivalent atoms are not exactly equivalent from the electronic point of view. Lattice dynamics, elastic and thermodynamic properties are found to be in good agreement with experiments and they confirm the non equivalency of the zinc and antimony atoms from the vibrational point of view. The calculated elastic properties show a relatively weak anisotropy and the hardest direction is the y direction. We observe the presence of low energy modes involving both Zn and Sb atoms at about 5-6 meV, similarly to what has been found in Zn4Sb3 and we suggest that the interactions of these modes with acoustic phonons could explain the relatively low thermal conductivity of ZnSb. Zinc vacancies are the most stable defects and this explains the intrinsic p-type conductivity of ZnSb.Comment: 33 pages, 8 figure

    Correlation transfer in stochastically driven oscillators over long and short time scales

    Full text link
    In the absence of synaptic coupling, two or more neural oscillators may become synchronized by virtue of the statistical correlations in their noisy input streams. Recent work has shown that the degree of correlation transfer from input currents to output spikes depends not only on intrinsic oscillator dynamics, but also depends on the length of the observation window over which the correlation is calculated. In this paper we use stochastic phase reduction and regular perturbations to derive the correlation of the total phase elapsed over long time scales, a quantity which provides a convenient proxy for the spike count correlation. Over short time scales, we derive the spike count correlation directly using straightforward probabilistic reasoning applied to the density of the phase difference. Our approximations show that output correlation scales with the autocorrelation of the phase resetting curve over long time scales. We also find a concise expression for the influence of the shape of the phase resetting curve on the initial slope of the output correlation over short time scales. These analytic results together with numerical simulations provide new intuitions for the recent counterintuitive finding that type I oscillators transfer correlations more faithfully than do type II over long time scales, while the reverse holds true for the better understood case of short time scales.Comment: 9 pages, 7 figures, submitted to Physical Review

    Etiology of stipe necrosis of cultivated mushrooms (Agaricus bosporus) in Egypt

    Get PDF
    Internal stipe necrosis of cultivated button mushrooms (Agaricus bisporus) is caused by the bacterium Ewingella americana (Enterobacteriaceae), which is part of the endogenous bacterial population in mushroom sporocarp tissues. Isolation of the causal agent of stipe necrosis led to the recovery of three bacterial morphotypes. Ewingella americana was isolated from 90% of mushroom samples showing mild stipe browning, while Pseudomonas fluorescens and P. tolaasii were also isolated. Inoculation with E. americana into button mushroom sporocarps yielded typical browning symptoms which were distinguishable from those of the bacterial soft rot. This bacterium was re-isolated and its identification was verified, thus fulfilling Koch’s postulates. However, inoculations with P. fluorescens and P. tolaasii caused no stipe browning. The strain identities were verified by biochemical identification and through analysis of their 16S rRNA gene sequences. This study has outlined the etiology of stipe necrosis of cultivated button mushroom in Egypt, and is the first report of E. americana in this country

    Vacuum Stability of the wrong sign (−ϕ6)(-\phi^{6}) Scalar Field Theory

    Full text link
    We apply the effective potential method to study the vacuum stability of the bounded from above (−ϕ6)(-\phi^{6}) (unstable) quantum field potential. The stability (∂E/∂b=0)\partial E/\partial b=0) and the mass renormalization (∂2E/∂b2=M2)\partial^{2} E/\partial b^{2}=M^{2}) conditions force the effective potential of this theory to be bounded from below (stable). Since bounded from below potentials are always associated with localized wave functions, the algorithm we use replaces the boundary condition applied to the wave functions in the complex contour method by two stability conditions on the effective potential obtained. To test the validity of our calculations, we show that our variational predictions can reproduce exactly the results in the literature for the PT\mathcal{PT}-symmetric ϕ4\phi^{4} theory. We then extend the applications of the algorithm to the unstudied stability problem of the bounded from above (−ϕ6)(-\phi^{6}) scalar field theory where classical analysis prohibits the existence of a stable spectrum. Concerning this, we calculated the effective potential up to first order in the couplings in dd space-time dimensions. We find that a Hermitian effective theory is instable while a non-Hermitian but PT\mathcal{PT}-symmetric effective theory characterized by a pure imaginary vacuum condensate is stable (bounded from below) which is against the classical predictions of the instability of the theory. We assert that the work presented here represents the first calculations that advocates the stability of the (−ϕ6)(-\phi^{6}) scalar potential.Comment: 21pages, 12 figures. In this version, we updated the text and added some figure

    An effective scalable SQL engine for NoSQL databases

    Get PDF
    NoSQL databases were initially devised to support a few concrete extreme scale applications. Since the specificity and scale of the target systems justified the investment of manually crafting application code their limited query and indexing capabilities were not a major im- pediment. However, with a considerable number of mature alternatives now available there is an increasing willingness to use NoSQL databases in a wider and more diverse spectrum of applications and, to most of them, hand-crafted query code is not an enticing trade-off. In this paper we address this shortcoming of current NoSQL databases with an effective approach for executing SQL queries while preserving their scalability and schema flexibility. We show how a full-fledged SQL engine can be integrated atop of HBase leading to an ANSI SQL compli- ant database. Under a standard TPC-C workload our prototype scales linearly with the number of nodes in the system and outperforms a NoSQL TPC-C implementation optimized for HBase.(undefined

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb
    • …
    corecore