23 research outputs found

    Channeling of Positrons through Periodically Bent Crystals: on Feasibility of Crystalline Undulator and Gamma-Laser

    Full text link
    The electromagnetic radiation generated by ultra-relativistic positrons channelling in a crystalline undulator is discussed. The crystalline undulator is a crystal whose planes are bent periodically with the amplitude much larger than the interplanar spacing. Various conditions and criteria to be fulfilled for the crystalline undulator operation are established. Different methods of the crystal bending are described. We present the results of numeric calculations of spectral distributions of the spontaneous radiation emitted in the crystalline undulator and discuss the possibility to create the stimulated emission in such a system in analogy with the free electron laser. A careful literature survey covering the formulation of all essential ideas in this field is given. Our investigation shows that the proposed mechanism provides an efficient source for high energy photons, which is worth to study experimentally.Comment: 52 pages, MikTeX, 14 figure

    Invited Lecture INTERACTIONS OF IONS WITH CARBON NANO-STRUCTURES

    Get PDF
    Abstract. Investigation into the properties of carbon nano-structures, involving fullerene molecules, carbon nanotubes, and the most recently contrived graphene, has been growing at a relentless rate over the past decade or so owing to prospects of their applications in nanotechnology. While interactions with particle beams have been an important part of this research endeavor in the context of various spectroscopic techniques (TEM, EELS, ...), the use of energetic electron and ion beams has recently emerged as a novel engineering tool for modifications of atomic structure and electronic properties of carbon nano-structures In that context, the most widely studied themes in literature are concerned with changes in carbon nanotubes upon exposure to the ion-beam irradiation at energies ranging from several tens of eV to some MeV. On the other hand, the empty cylindrical space in individual carbon nanotubes, and a high degree of their ordering and alignment in structures called ropes or bundles, provide unique means for achieving the effect of ion channeling. Prospects of realization and a range of possible applications of ion channeling through carbon nanotubes at energies from keV to TeV have stimulated an active research area, which was recently reviewed After assessing some key experimental facts and the status of computer simulations of ion irradiation effects on carbon nanotubes, I shall discuss several problems arising in modeling of ion interactions with carbon nanotube

    Channeling of fast particles and associated phenomena

    No full text
    corecore