3,027 research outputs found
Transport mechanism through metal-cobaltite interfaces
The resistive switching (RS) properties as a function of temperature were
studied for Ag/LaSrCoO (LSCO) interfaces. The LSCO is a
fully-relaxed 100 nm film grown by metal organic deposition on a LaAlO
substrate. Both low and a high resistance states were set at room temperature
and the temperature dependence of their current-voltage (IV) characteristics
was mea- sured taking care to avoid a significant change of the resistance
state. The obtained non-trivial IV curves of each state were well reproduced by
a circuit model which includes a Poole-Frenkel element and two ohmic
resistances. A microscopic description of the changes produced by the RS is
given, which enables to envision a picture of the interface as an area where
conductive and insulating phases are mixed, producing Maxwell-Wagner
contributions to the dielectric properties.Comment: 13 pages, 5 figures, to be published in APL. Corresponding author: C.
Acha ([email protected]
Semiclassical Electron Correlation in Density-Matrix Time-Propagation
Lack of memory (locality in time) is a major limitation of almost all present
time-dependent density functional approximations. By using semiclassical
dynamics to compute correlation effects within a density-matrix functional
approach, we incorporate memory, including initial-state dependence, as well as
changing occupation numbers, and predict more observables in strong-field
applications.Comment: 4.5 pages, 1 figur
Feynman's Path Integrals and Bohm's Particle Paths
Both Bohmian mechanics, a version of quantum mechanics with trajectories, and
Feynman's path integral formalism have something to do with particle paths in
space and time. The question thus arises how the two ideas relate to each
other. In short, the answer is, path integrals provide a re-formulation of
Schroedinger's equation, which is half of the defining equations of Bohmian
mechanics. I try to give a clear and concise description of the various aspects
of the situation.Comment: 4 pages LaTeX, no figures; v2 shortened a bi
Slow relaxation, confinement, and solitons
Millisecond crystal relaxation has been used to explain anomalous decay in
doped alkali halides. We attribute this slowness to Fermi-Pasta-Ulam solitons.
Our model exhibits confinement of mechanical energy released by excitation.
Extending the model to long times is justified by its relation to solitons,
excitations previously proposed to occur in alkali halides. Soliton damping and
observation are also discussed
The eclipsing X-ray pulsar X-7 in M33
Using our extensive ROSAT X-ray observations of M33, we confirm a 3.45 day
eclipse period for the Einstein source X-7 (Larson & Schulman, 1997) and
discover evidence for a 0.31-s pulse period. The orbital period, pulse period
and observed X-ray luminosity are remarkably similar to SMC X-1. We therefore
suggest M33 X-7 is a neutron star high mass X-ray binary with a 15-40 Msol O/B
companion and a binary separation of 25-33 Rsol if the companion is almost
filling its Roche lobe.Comment: accepted for publication in MNRA
Analysis of a three-component model phase diagram by Catastrophe Theory
We analyze the thermodynamical potential of a lattice gas model with three
components and five parameters using the methods of Catastrophe Theory. We find
the highest singularity, which has codimension five, and establish its
transversality. Hence the corresponding seven-degree Landau potential, the
canonical form Wigwam or , constitutes the adequate starting point to
study the overall phase diagram of this model.Comment: 16 pages, Latex file, submitted to Phys. Rev.
Closed Path Integrals and Renormalisation in Quantum Mechanics
We suggest a closed form expression for the path integral of quantum
transition amplitudes. We introduce a quantum action with renormalized
parameters. We present numerical results for the potential. The
renormalized action is relevant for quantum chaos and quantum instantons.Comment: Revised text, 1 figure added; Text (LaTeX file), 1 Figure (ps file
Path Integrals for Parastatistics
We demonstrate that parastatistics can be quantized using path integrals by
calculating the generating functionals for time-ordered products of both free
and interacting parabose and parafermi fields in terms of path integrals. We
also give a convenient form of the commutation relations for the Green
components of the parabose and parafermi operators in both the canonical and
path integral formalisms.Comment: typos corrected, references added, some new content. version that has
been publishe
Decay of Quantum Accelerator Modes
Experimentally observable Quantum Accelerator Modes are used as a test case
for the study of some general aspects of quantum decay from classical stable
islands immersed in a chaotic sea. The modes are shown to correspond to
metastable states, analogous to the Wannier-Stark resonances. Different regimes
of tunneling, marked by different quantitative dependence of the lifetimes on
1/hbar, are identified, depending on the resolution of KAM substructures that
is achieved on the scale of hbar. The theory of Resonance Assisted Tunneling
introduced by Brodier, Schlagheck, and Ullmo [9], is revisited, and found to
well describe decay whenever applicable.Comment: 16 pages, 11 encapsulated postscript figures (figures with a better
resolution are available upon request to the authors); added reference for
section
Magnetic Reversal in Nanoscopic Ferromagnetic Rings
We present a theory of magnetization reversal due to thermal fluctuations in
thin submicron-scale rings composed of soft magnetic materials. The
magnetization in such geometries is more stable against reversal than that in
thin needles and other geometries, where sharp ends or edges can initiate
nucleation of a reversed state. The 2D ring geometry also allows us to evaluate
the effects of nonlocal magnetostatic forces. We find a `phase transition',
which should be experimentally observable, between an Arrhenius and a
non-Arrhenius activation regime as magnetic field is varied in a ring of fixed
size.Comment: RevTeX, 23 pages, 7 figures, to appear in Phys. Rev.
- …