98 research outputs found

    Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer

    Get PDF
    PURPOSE: The known epithelial ovarian cancer (EOC) susceptibility genes account for less than 50% of the heritable risk of ovarian cancer suggesting that other susceptibility genes exist. The aim of this study was to evaluate the contribution to ovarian cancer susceptibility of rare deleterious germline variants in a set of candidate genes. METHODS: We sequenced the coding region of 54 candidate genes in 6385 invasive EOC cases and 6115 controls of broad European ancestry. Genes with an increased frequency of putative deleterious variants in cases versus controls were further examined in an independent set of 14 135 EOC cases and 28 655 controls from the Ovarian Cancer Association Consortium and the UK Biobank. For each gene, we estimated the EOC risks and evaluated associations between germline variant status and clinical characteristics. RESULTS: The ORs associated for high-grade serous ovarian cancer were 3.01 for PALB2 (95% CI 1.59 to 5.68; p=0.00068), 1.99 for POLK (95% CI 1.15 to 3.43; p=0.014) and 4.07 for SLX4 (95% CI 1.34 to 12.4; p=0.013). Deleterious mutations in FBXO10 were associated with a reduced risk of disease (OR 0.27, 95% CI 0.07 to 1.00, p=0.049). However, based on the Bayes false discovery probability, only the association for PALB2 in high-grade serous ovarian cancer is likely to represent a true positive. CONCLUSIONS: We have found strong evidence that carriers of PALB2 deleterious mutations are at increased risk of high-grade serous ovarian cancer. Whether the magnitude of risk is sufficiently high to warrant the inclusion of PALB2 in cancer gene panels for ovarian cancer risk testing is unclear; much larger sample sizes will be needed to provide sufficiently precise estimates for clinical counselling

    Profiling the immune landscape in mucinous ovarian carcinoma

    Get PDF
    Objective: Mucinous ovarian carcinoma (MOC) is a rare histotype of ovarian cancer, with low response rates to standard chemotherapy, and very poor survival for patients diagnosed at advanced stage. There is a limited understanding of the MOC immune landscape, and consequently whether immune checkpoint inhibitors could be considered for a subset of patients. Methods: We performed multicolor immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays in a cohort of 126 MOC patients. Cell densities were calculated in the epithelial and stromal components for tumor-associated macrophages (CD68+/PD-L1+, CD68+/PD-L1-), T cells (CD3+/CD8-, CD3+/CD8+), putative T-regulatory cells (Tregs, FOXP3+), B cells (CD20+/CD79A+), plasma cells (CD20-/CD79a+), and PD-L1+ and PD-1+ cells, and compared these values with clinical factors. Univariate and multivariable Cox Proportional Hazards assessed overall survival. Unsupervised k-means clustering identified patient subsets with common patterns of immune cell infiltration. Results: Mean densities of PD1+ cells, PD-L1- macrophages, CD4+ and CD8+ T cells, and FOXP3+ Tregs were higher in the stroma compared to the epithelium. Tumors from advanced (Stage III/IV) MOC had greater epithelial infiltration of PD-L1- macrophages, and fewer PD-L1+ macrophages compared with Stage I/II cancers (p = 0.004 and p = 0.014 respectively). Patients with high epithelial density of FOXP3+ cells, CD8+/FOXP3+ cells, or PD-L1- macrophages, had poorer survival, and high epithelial CD79a + plasma cells conferred better survival, all upon univariate analysis only. Clustering showed that most MOC (86%) had an immune depleted (cold) phenotype, with only a small proportion (11/76,14%) considered immune inflamed (hot) based on T cell and PD-L1 infiltrates. Conclusion: In summary, MOCs are mostly immunogenically ‘cold’, suggesting they may have limited response to current immunotherapies

    Pleiotropy-guided transcriptome imputation from normal and tumor tissues identifies candidate susceptibility genes for breast and ovarian cancer.

    Get PDF
    Familial, sequencing, and genome-wide association studies (GWASs) and genetic correlation analyses have progressively unraveled the shared or pleiotropic germline genetics of breast and ovarian cancer. In this study, we aimed to leverage this shared germline genetics to improve the power of transcriptome-wide association studies (TWASs) to identify candidate breast cancer and ovarian cancer susceptibility genes. We built gene expression prediction models using the PrediXcan method in 681 breast and 295 ovarian tumors from The Cancer Genome Atlas and 211 breast and 99 ovarian normal tissue samples from the Genotype-Tissue Expression project and integrated these with GWAS meta-analysis data from the Breast Cancer Association Consortium (122,977 cases/105,974 controls) and the Ovarian Cancer Association Consortium (22,406 cases/40,941 controls). The integration was achieved through application of a pleiotropy-guided conditional/conjunction false discovery rate (FDR) approach in the setting of a TWASs. This identified 14 candidate breast cancer susceptibility genes spanning 11 genomic regions and 8 candidate ovarian cancer susceptibility genes spanning 5 genomic regions at conjunction FDR 1 Mb away from known breast and/or ovarian cancer susceptibility loci. We also identified 38 candidate breast cancer susceptibility genes and 17 candidate ovarian cancer susceptibility genes at conjunction FDR < 0.05 at known breast and/or ovarian susceptibility loci. The 22 genes identified by our cross-cancer analysis represent promising candidates that further elucidate the role of the transcriptome in mediating germline breast and ovarian cancer risk

    Clinical parameters affecting survival outcomes in patients with low-grade serous ovarian carcinoma: An international multicentre analysis

    Get PDF
    Background: Women with low-grade ovarian serous carcinoma (LGSC) benefit from surgical treatment; however, the role of chemotherapy is controversial. We examined an international database through the Ovarian Cancer Association Consortium to identify factors that affect survival in LGSC. Methods: We performed a retrospective cohort analysis of patients with LGSC who had had primary surgery and had overall survival data available. We performed univariate and multivariate analyses of progression-free survival and overall survival, and generated Kaplan–Meier survival curves. Results: Of the 707 patients with LGSC, 680 (96.2%) had available overall survival data. The patients’ median age overall was 54 years. Of the 659 patients with International Federation of Obstetrics and Gynecology stage data, 156 (23.7%) had stage I disease, 64 (9.7%) had stage II, 395 (59.9%) had stage III, and 44 (6.7%) had stage IV. Of the 377 patients with surgical data, 200 (53.0%) had no visible residual disease. Of the 361 patients with chemotherapy data, 330 (91.4%) received first-line platinum-based chemotherapy. The median follow-up duration was 5.0 years. The median progression-free survival and overall survival were 43.2 months and 110.4 months, respectively. Multivariate analysis indicated a statistically significant impact of stage and residual disease on progression-free survival and overall survival. Platinum-based chemotherapy was not associated with a survival advantage. Conclusion: This multicentre analysis indicates that complete surgical cytoreduction to no visible residual disease has the most impact on improved survival in LGSC. This finding could immediately inform and change practice.publishedVersio

    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

    Get PDF

    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

    Get PDF
    BACKGROUND: Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. METHODS: Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types. RESULTS: We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P \u3c .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P \u3c .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types. CONCLUSIONS: CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention

    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

    Get PDF
    BACKGROUND: Known risk alleles for epithelial ovarian cancer (EOC) account for approximately 40% of the heritability for EOC. Copy number variants (CNVs) have not been investigated as EOC risk alleles in a large population cohort. METHODS: Single nucleotide polymorphism array data from 13 071 EOC cases and 17 306 controls of White European ancestry were used to identify CNVs associated with EOC risk using a rare admixture maximum likelihood test for gene burden and a by-probe ratio test. We performed enrichment analysis of CNVs at known EOC risk loci and functional biofeatures in ovarian cancer-related cell types. RESULTS: We identified statistically significant risk associations with CNVs at known EOC risk genes; BRCA1 (PEOC = 1.60E-21; OREOC = 8.24), RAD51C (Phigh-grade serous ovarian cancer [HGSOC] = 5.5E-4; odds ratio [OR]HGSOC = 5.74 del), and BRCA2 (PHGSOC = 7.0E-4; ORHGSOC = 3.31 deletion). Four suggestive associations (P < .001) were identified for rare CNVs. Risk-associated CNVs were enriched (P < .05) at known EOC risk loci identified by genome-wide association study. Noncoding CNVs were enriched in active promoters and insulators in EOC-related cell types. CONCLUSIONS: CNVs in BRCA1 have been previously reported in smaller studies, but their observed frequency in this large population-based cohort, along with the CNVs observed at BRCA2 and RAD51C gene loci in EOC cases, suggests that these CNVs are potentially pathogenic and may contribute to the spectrum of disease-causing mutations in these genes. CNVs are likely to occur in a wider set of susceptibility regions, with potential implications for clinical genetic testing and disease prevention

    Polygenic risk modeling for prediction of epithelial ovarian cancer risk

    Get PDF
    Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs

    Gene expression profiling of mucinous ovarian tumors and comparison with upper and lower gastrointestinal tumors identifies markers associated with adverse outcomes.

    Get PDF
    PURPOSE: Advanced-stage mucinous ovarian carcinoma (MOC) has poor chemotherapy response and prognosis and lacks biomarkers to aid stage I adjuvant treatment. Differentiating primary MOC from gastrointestinal (GI) metastases to the ovary is also challenging due to phenotypic similarities. Clinicopathologic and gene-expression data were analyzed to identify prognostic and diagnostic features. EXPERIMENTAL DESIGN: Discovery analyses selected 19 genes with prognostic/diagnostic potential. Validation was performed through the Ovarian Tumor Tissue Analysis consortium and GI cancer biobanks comprising 604 patients with MOC (n = 333), mucinous borderline ovarian tumors (MBOT, n = 151), and upper GI (n = 65) and lower GI tumors (n = 55). RESULTS: Infiltrative pattern of invasion was associated with decreased overall survival (OS) within 2 years from diagnosis, compared with expansile pattern in stage I MOC [hazard ratio (HR), 2.77; 95% confidence interval (CI), 1.04–7.41, P = 0.042]. Increased expression of THBS2 and TAGLN was associated with shorter OS in MOC patients (HR, 1.25; 95% CI, 1.04–1.51, P = 0.016) and (HR, 1.21; 95% CI, 1.01–1.45, P = 0.043), respectively. ERBB2 (HER2) amplification or high mRNA expression was evident in 64 of 243 (26%) of MOCs, but only 8 of 243 (3%) were also infiltrative (4/39, 10%) or stage III/IV (4/31, 13%). CONCLUSIONS: An infiltrative growth pattern infers poor prognosis within 2 years from diagnosis and may help select stage I patients for adjuvant therapy. High expression of THBS2 and TAGLN in MOC confers an adverse prognosis and is upregulated in the infiltrative subtype, which warrants further investigation. Anti-HER2 therapy should be investigated in a subset of patients. MOC samples clustered with upper GI, yet markers to differentiate these entities remain elusive, suggesting similar underlying biology and shared treatment strategies
    corecore