21 research outputs found

    Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal

    Full text link
    Haematopoietic stem cells (HSCs) maintain lifelong blood production and increase blood cell numbers in response to chronic and acute injury. However, the mechanism(s) by which inflammatory insults are communicated to HSCs and their consequences for HSC activity remain largely unknown. Here, we demonstrate that interleukin-1 (IL-1), which functions as a key pro-inflammatory 'emergency' signal, directly accelerates cell division and myeloid differentiation of HSCs through precocious activation of a PU.1-dependent gene program. Although this effect is essential for rapid myeloid recovery following acute injury to the bone marrow, chronic IL-1 exposure restricts HSC lineage output, severely erodes HSC self-renewal capacity, and primes IL-1-exposed HSCs to fail massive replicative challenges such as transplantation. Importantly, these damaging effects are transient and fully reversible on IL-1 withdrawal. Our results identify a critical regulatory circuit that tailors HSC responses to acute needs, and is likely to underlie deregulated blood homeostasis in chronic inflammation conditions

    Hematopoietic Stem Cell Heterogeneity

    No full text
    Hematopoietic stem cells (HSCs) maintain lifelong production of mature blood cells and regenerate the hematopoietic system after cytotoxic injury. Use of expanding cell surface marker panels and advanced functional analyses have revealed the presence of several immunophenotypically different HSC subsets with distinct self-renewal and repopulating capacity and bias toward selective lineage differentiation. This chapter summarizes current understanding of the phenotypic and functional heterogeneity within the HSC pool, with emphasis on the immunophenotypes and functional features of several known HSC subsets, and their roles in steady-state and emergency hematopoiesis, and in aging. The chapter also highlights some of the future research directions to elucidate further the biology and function of different HSC subsets in health and disease states
    corecore