20 research outputs found
On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures
We study the notion of limit sets of cellular automata associated with
probability measures (mu-limit sets). This notion was introduced by P. Kurka
and A. Maass. It is a refinement of the classical notion of omega-limit sets
dealing with the typical long term behavior of cellular automata. It focuses on
the words whose probability of appearance does not tend to 0 as time tends to
infinity (the persistent words). In this paper, we give a characterisation of
the persistent language for non sensible cellular automata associated with
Bernouilli measures. We also study the computational complexity of these
languages. We show that the persistent language can be non-recursive. But our
main result is that the set of quasi-nilpotent cellular automata (those with a
single configuration in their mu-limit set) is neither recursively enumerable
nor co-recursively enumerable
Turing degrees of limit sets of cellular automata
Cellular automata are discrete dynamical systems and a model of computation.
The limit set of a cellular automaton consists of the configurations having an
infinite sequence of preimages. It is well known that these always contain a
computable point and that any non-trivial property on them is undecidable. We
go one step further in this article by giving a full characterization of the
sets of Turing degrees of cellular automata: they are the same as the sets of
Turing degrees of effectively closed sets containing a computable point
String Transformation for n-Dimensional Image Compression
Image compression and manipulation by weighted finite automata exploit similarities in the images in order to obtain notable compression ratios and manipulation tools. The investigations are often based on two-dimensional images. A natura