1 research outputs found

    Automatic Segmentation of Land Cover in Satellite Images

    Get PDF
    Semantic segmentation problems such as landcover segmentation rely on large amounts of annotated images to excel. Without such data for target regions, transfer learning methods are widely used to incorporate knowledge from other areas and domains to improve performance. In this study, we analyze the performance of landcover segmentation models trained on low-resolution images with insufficient data for the targeted region or zoom level. In order to boost performance on target data, we experiment with models trained with unsupervised, semi-supervised, and supervised transfer learning approaches, including satellite images from public datasets and other unlabeled sources.According to experimental results, transfer learning improves segmentation performance by 3.4% MIoU (mean intersection over union) in rural regions and 12.9% MIoU in urban regions. We observed that transfer learning is more effective when two datasets share a comparable zoom level and are labeled with identical rules; otherwise, semi-supervised learning is more effective using unlabeled data. Pseudo labeling based unsupervised domain adaptation method improved building detection performance in urban cities. In addition, experiments showed that HRNet outperformed building segmentation approaches in multi-class segmentation
    corecore