2 research outputs found

    Amisulpride and l-DOPA modulate subcortical brain nuclei connectivity in resting-state pharmacologic magnetic resonance imaging

    No full text
    The precise understanding of the dopaminergic (DA) system and its pharmacological modifications is crucial for diagnosis and treatment of neuropsychiatric disorders, as well as for understanding basic processes, such as motivation and reward. We probed the functional connectivity (FC) of subcortical nuclei related to the DA system according to seed regions defined according to an atlas of subcortical nuclei. We conducted a large pharmaco-fMRI study using a double-blind, placebo-controlled design, where we examined the effect of l -DOPA, a dopamine precursor, and amisulpride, a D2/D3-receptor antagonist on resting-state FC in 45 healthy young adults using a cross-over design. We examined the FC of subcortical nuclei with connection to the reward system and their reaction to opposing pharmacological probing. Amisulpride increased FC from the putamen to the precuneus and from ventral striatum to precentral gyrus. l -DOPA increased FC from the ventral tegmental area (VTA) to the insula/operculum and between ventral striatum and ventrolateral prefrontal cortex and it disrupted ventral striatal and dorsal caudate FC with the medial prefrontal cortex. In an exploratory analysis, we demonstrated that higher self-rated impulsivity goes together with a significant increase in VTA-mid-cingulate gyrus FC during l -DOPA-challenge. Therefore, our DA challenge modulated distinct large-scale subcortical connectivity networks. A dopamine-boost can increase midbrain DA nuclei connectivity to the cortex. The involvement of the VTA-cingulum connectivity in dependence of impulsivity has implications for diagnosis and therapy in disorders like ADHD

    No effect of a dopaminergic modulation fMRI task by amisulpride and L-DOPA on reward anticipation in healthy volunteers

    No full text
    Rationale: Dysregulation of dopaminergic neurotransmission, specifically altered reward processing assessed via the reward anticipation in the MID task, plays a central role in the etiopathogenesis of neuropsychiatric disorders. Objectives: We hypothesized to find a difference in the activity level of the reward system (measured by the proxy reward anticipation) under drug administration versus placebo, in that amisulpride reduces, and L-DOPA enhances, its activity. Methods: We studied the influence of dopamine agonist L-DOPA and the antagonist amisulpride on the reward system using functional magnetic resonance imaging (fMRI) during a monetary incentive delay (MID) task in n = 45 healthy volunteers in a randomized, blinded, cross-over study. Results: The MID paradigm elicits strong activation in reward-dependent structures (such as ventral striatum, putamen, caudate, anterior insula) during reward anticipation. The placebo effect demonstrated the expected significant blood oxygen level–dependent activity in reward-dependent brain regions. Neither amisulpride nor L-DOPA led to significant changes in comparison with the placebo condition. This was true for whole-brain analysis as well as analysis of a pre-defined nucleus accumbens region-of-interest mask. Conclusion: The present results cast doubt on the sensitivity of reward anticipation contrast in the MID task for assessing dopamine-specific changes in healthy volunteers by pharmaco-fMRI. While our task was not well-suited for detailed analysis of the outcome phase, we provide reasonable arguments that the lack of effect in the anticipation phase is not due to an inefficient task but points to unexpected behavior of the reward system during pharmacological challenge. Group differences of reward anticipation should therefore not be seen as simple representatives of dopaminergic states
    corecore