574 research outputs found

    Dynamics of conversion of supercurrents into normal currents, and vice versa

    Full text link
    The generation and destruction of the supercurrent in a superconductor (S) between two resistive normal (N) current leads connected to a current source is computed from the source equation for the supercurrent density. This equation relates the gradient of the pair potential's phase to electron and hole wavepackets that create and destroy Cooper pairs in the N/S interfaces. Total Andreev reflection and supercurrent transmission of electrons and holes are coupled together by the phase rigidity of the non-bosonic Cooper-pair condensate. The calculations are illustrated by snapshots from a computer film.Comment: 8 pages, 1 figure, accepted by Phys. Rev.

    Gaussian Wavefunctional Approach in Thermofield Dynamics

    Full text link
    The Gaussian wavefunctional approach is developed in thermofield dynamics. We manufacture thermal vacuum wavefunctional, its creation as well as annihilation operators,and accordingly thermo-particle excited states. For a (D+1)-dimensional scalar field system with an arbitrary potential whose Fourier representation exists in a sense of tempered distributions, we calculate the finite temperature Gaussian effective potential (FTGEP), one- and two-thermo-particle-state energies. The zero-temperature limit of each of them is just the corresponding result in quantum field theory, and the FTGEP can lead to the same one of each of some concrete models as calculated by the imaginary time Green function.Comment: the revised version of hep-th/9807025, with one equation being added, a few sentences rewritten, and some spelling mistakes corrected. 7 page, Revtex, no figur

    Structure and properties of small sodium clusters

    Get PDF
    We have investigated structure and properties of small metal clusters using all-electron ab initio theoretical methods based on the Hartree-Fock approximation and density functional theory, perturbation theory and compared results of our calculations with the available experimental data and the results of other theoretical works. We have systematically calculated the optimized geometries of neutral and singly charged sodium clusters having up to 20 atoms, their multipole moments (dipole and quadrupole), static polarizabilities, binding energies per atom, ionization potentials and frequencies of normal vibration modes. Our calculations demonstrate the great role of many-electron correlations in the formation of electronic and ionic structure of small metal clusters and form a good basis for further detailed study of their dynamic properties, as well as structure and properties of other atomic cluster systems.Comment: 47 pages, 16 figure

    Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach

    Full text link
    We present a method for computing optical absorption spectra by means of a Bethe-Salpeter equation approach, which is based on a conserving linear response calculation for electron-hole coherences in the presence of an external electromagnetic field. This procedure allows, in principle, for the determination of the electron-hole correlation function self-consistently with the corresponding single-particle Green function. We analyze the general approach for a "one-shot" calculation of the photoabsorption cross section of finite systems, and discuss the importance of scattering and dephasing contributions in this approach. We apply the method to the closed-shell clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure

    Ionic and electronic structure of sodium clusters up to N=59

    Get PDF
    We determined the ionic and electronic structure of sodium clusters with even electron numbers and 2 to 59 atoms in axially averaged and three-dimensional density functional calculations. A local, phenomenological pseudopotential that reproduces important bulk and atomic properties and facilitates structure calculations has been developed. Photoabsorption spectra have been calculated for Na2\mathrm{Na}_2, Na8\mathrm{Na}_8, and Na9+\mathrm{Na}_9^+ to Na59+\mathrm{Na}_{59}^+. The consistent inclusion of ionic structure considerably improves agreement with experiment. An icosahedral growth pattern is observed for Na19+\mathrm{Na}_{19}^+ to Na59+\mathrm{Na}_{59}^+. This finding is supported by photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality can be requested from the author

    Ionic structure and photoabsorption in medium sized sodium clusters

    Get PDF
    We present ground-state configurations and photoabsorption spectra of Na-7+, Na-27+ and Na-41+. Both the ionic structure and the photoabsorption spectra of medium-size sodium clusters beyond Na-20 have been calculated self-consistently with a nonspherical treatment of the valence electrons in density functional theory. We use a local pseudopotential that has been adjusted to experimental bulk properties and the atomic 3s level of sodium. Our studies have shown that both the ionic structure of the ground state and the positions of the plasmon resonances depend sensitively on the pseudopotential used in the calculation, which stresses the importance of its consistent use in both steps.Comment: 4 pages, 3 figures. Accepted for publication in PRB, tentatively July 15th, 1998 some typos corrected, brought to nicer forma

    Scissors modes in triaxial metal clusters

    Get PDF
    We study the scissors mode (orbital M1 excitations) in small Na clusters, triaxial metal clusters Na12{\rm Na}_{12} and Na16{\rm Na}_{16} and the close-to-spherical Na9+{{\rm Na}_9}^+, all described in DFT with detailed ionic background. The scissors modes built on spin-saturated ground and spin-polarized isomeric states are analyzed in virtue of both macroscopic collective and microscopic shell-model treatments. It is shown that the mutual destruction of Coulomb and the exchange-correlation parts of the residual interaction makes the collective shift small and the net effect can depend on details of the actual excited state. The crosstalk with dipole and spin-dipole modes is studied in detail. In particular, a strong crosstalk with spin-dipole negative-parity mode is found in the case of spin-polarized states. Triaxiality and ionic structure considerably complicate the scissors response, mainly at expense of stronger fragmentation of the strength. Nevertheless, even in these complicated cases the scissors mode is mainly determined by the global deformation. The detailed ionic structure destroys the spherical symmetry and can cause finite M1 response (transverse optical mode) even in clusters with zero global deformation. But its strength turns out to be much smaller than for the genuine scissors modes in deformed systems.Comment: 17 pages, 5 figure

    Short-range and tensor correlations in the 16^{16}O(e,e'pn) reaction

    Get PDF
    The cross sections for electron induced two-nucleon knockout reactions are evaluated for the example of the 16^{16}O(e,e'pn)14^{14}N reaction leading to discrete states in the residual nucleus 14^{14}N. These calculations account for the effects of nucleon-nucleon correlations and include the contributions of two-body meson exchange currents as the pion seagull, pion in flight and the isobar current contribution. The effects of short-range as well as tensor correlations are calculated within the framework of the coupled cluster method employing the Argonne V14 potential as a model for a realistic nucleon-nucleon interaction. The relative importance of correlation effects as compared to the contribution of the meson exchange currents depends on the final state of the residual nucleus. The cross section leading to specific states, like e.g. the ground state of 14^{14}N, is rather sensitive to the details of the correlated wave function.Comment: 16 pages, 9 figures include

    Andreev Bound States and Self-Consistent Gap Functions for SNS and SNSNS Systems

    Full text link
    Andreev bound states in clean, ballistic SNS and SNSNS junctions are calculated exactly and by using the Andreev approximation (AA). The AA appears to break down for junctions with transverse dimensions chosen such that the motion in the longitudinal direction is very slow. The doubly degenerate states typical for the traveling waves found in the AA are replaced by two standing waves in the exact treatment and the degeneracy is lifted. A multiple-scattering Green's function formalism is used, from which the states are found through the local density of states. The scattering by the interfaces in any layered system of ballistic normal metals and clean superconducting materials is taken into account exactly. The formalism allows, in addition, for a self-consistent determination of the gap function. In the numerical calculations the pairing coupling constant for aluminum is used. Various features of the proximity effect are shown

    The (1+1)-dimensional Massive sine-Gordon Field Theory and the Gaussian Wave-functional Approach

    Full text link
    The ground, one- and two-particle states of the (1+1)-dimensional massive sine-Gordon field theory are investigated within the framework of the Gaussian wave-functional approach. We demonstrate that for a certain region of the model-parameter space, the vacuum of the field system is asymmetrical. Furthermore, it is shown that two-particle bound state can exist upon the asymmetric vacuum for a part of the aforementioned region. Besides, for the bosonic equivalent to the massive Schwinger model, the masses of the one boson and two-boson bound states agree with the recent second-order results of a fermion-mass perturbation calculation when the fermion mass is small.Comment: Latex, 11 pages, 8 figures (EPS files
    corecore