2 research outputs found

    Inhibitory NKG2A<sup>+</sup> and absent activating NKG2C<sup>+</sup> NK cell responses are associated with the development of EBV<sup>+</sup> lymphomas

    Get PDF
    Epstein-Barr virus (EBV) is a ubiquitous herpesvirus, which infects over 90% of the adult human population worldwide. After primary infections, EBV is recurrently reactivating in most adult individuals. It is, however, unclear, why these EBV reactivations progress to EBV+ Hodgkin (EBV+HL) or non-Hodgkin lymphomas (EBV+nHL) only in a minority of EBV-infected individuals. The EBV LMP-1 protein encodes for a highly polymorphic peptide, which upregulates the immunomodulatory HLA-E in EBV-infected cells, thereby stimulating the inhibitory NKG2A-, but also the activating NKG2C-receptor on natural killer (NK) cells. Using a genetic-association approach and functional NK cell analyses, we now investigated, whether these HLA-E-restricted immune responses impact the development of EBV+HL and EBV+nHL. Therefore, we recruited a study cohort of 63 EBV+HL and EBV+nHL patients and 192 controls with confirmed EBV reactivations, but without lymphomas. Here, we demonstrate that in EBV+ lymphoma patients exclusively the high-affine LMP-1 GGDPHLPTL peptide variant-encoding EBV-strains reactivate. In EBV+HL and EBV+nHL patients, the high-expressing HLA-E*0103/0103 genetic variant was significantly overrepresented. Combined, the LMP-1 GGDPHLPTL and HLA-E*0103/0103 variants efficiently inhibited NKG2A+ NK cells, thereby facilitating the in vitro spread of EBV-infected tumor cells. In addition, EBV+HL and EBV+nHL patients, showed impaired pro-inflammatory NKG2C+ NK cell responses, which accelerated the in vitro EBV-infected tumor cells spread. In contrast, the blocking of NKG2A by monoclonal antibodies (Monalizumab) resulted in efficient control of EBV-infected tumor cell growth, especially by NKG2A+NKG2C+ NK cells. Thus, the HLA-E/LMP-1/NKG2A pathway and individual NKG2C+ NK cell responses are associated with the progression toward EBV+ lymphomas.</p

    Delineation of Source Protection Zones Using Statistical Methods

    No full text
    Source protection zones are increasingly important for securing the long-term viability of drinking water derived from groundwater resources. These may be either time-related capture zones or catchments related to the activity of a pumping well or spring. The establishment of such zones is an indispensable measure for the proper assessment of groundwater resource vulnerability and reduction of risk, which may be induced by human activities. The delineation of these protection zones is usually performed with the aid of models, which are in turn based on site-specific information of the aquifer’s geometry, hydraulic parameters and boundary conditions. Owing to the imperfect knowledge of such information, predicting the location of these zones is inherently uncertain. It is possible to quantify this uncertainty in a statistical manner through the development of probability maps, which shows the probability that a particular surface location belongs to the aquifer’s capture zone (or catchment area). This publication aims at the investigation of the requirements for the establishment of probabilistic source protection zones, the practical use of stochastic methods in their delineation, and the use of data-assimilation for uncertainty reduction. It also provides a methodology for the implementation of these methods by modelling practitioners
    corecore