27 research outputs found

    Mitigation of the Urban Heat Island Effect by self-cooling Concrete Pavers

    Get PDF
    Worldwide an increasing migration from rural to urban regions can be observed. Hence cities are growing and as a result the building density and the land sealing rise. Concrete as commonly used building material in urban structures provides a high heat storage capacity. Therefore the microclimate in cities has become warmer than in the surrounding areas. This phenomenon is called Urban Heat Island Effect. To mitigate this situation a large scale application of self-cooling concrete pavers is an approach to reduce the urban heat island effect. Making use of evaporation enthalpy, this new type of pavements counterbalances the absorption of solar radiation and the subsequent transfer of heat to the surrounding environment. The typical double-layer structure of concrete paving stones can be maintained. The mass concrete acts as a water storage layer and is covered by a permeable face concrete. As the different requirements of these layers demand different concrete mixtures, they are developed and optimised for their respective functions. This paper presents some suitable no-slump concrete mixtures that combine a sufficient compressive strength as well as good water transportation properties for the above mentioned approach

    Cement Testing in Africa – Conclusions from the First Africa-Wide Proficiency Testing Scheme

    Get PDF
    African cement infrastructure is quite complex. Apart from Northern Africa and South Africa in particular, cement plants are scarce resulting in highly unstable cement pricing. Clinker and cement are imported from overseas, e.g. from Portugal, Turkey, Pakistan, Indonesia, and China. Imports are typically determined by the lowest price, and as a result the countries of origin of products vary regularly yielding large scatter of properties. Quality control and a good quality infrastructure are thus of utmost importance for the safety of the populace, an issue, which is actually often neglected. With funding of the German Metrology Institute (PTB) and support of the SPIN project, a proficiency testing scheme for cement testing according to EN 196 was set up for African laboratories. Proficiency testing schemes, also called round robins, are inter-laboratory performance comparisons allowing participants to evaluate themselves against pre-established criteria. They are a powerful tool to help laboratories improve their performance as well as demonstrate their competences to accreditation bodies or customers. 26 laboratories from 20 nations, 18 of which from Africa, participated. The BAM Federal Institute for Materials Research and Testing acted as coordinator and provider of the scheme. The aim of the round robin was to interpret the submitted data further beyond the pure statistic analyses. The data provided a positive picture of the performance of the participants in general, but it also exhibited a number of technical fields that need improvement. The paper provides the general results of the scheme and analyses identified strengths and weak points based on the submitted and non submitted data as well as on discrepancies from the EN 196 procedures during measurements. The application of EN standards for material testing is critically discussed and since quality infrastructure is also always an issue between industrial and political stakeholders, suggestions for the mitigation of the identified shared problems are given

    Rheology Modifying Admixtures: The Key to Innovation in Concrete Technology – A General Overview and Implications for Africa

    Get PDF
    Innovative admixture technology has significantly widened up the range of possibilities of concrete engineers. For many decades the water to cement ratio (w/c) was the major influencing factor for the performance of concrete. Due to the need to adjust a consistency, which still allowed reasonable workability, the w/c was typically significantly higher than technologically reasonable. Rheology modifying admixtures support adjusting the concrete consistency largely independent of the w/c. It was only after the invention of the first superplasticizers that modern concrete technology significantly evolved in terms of flowability, strength, and durability, and only due to the steady evolution of the technology modern innovations, such as Self-Compacting Concrete, Ultra-High-Performance Concrete, or Engineered Cementitious Composites were made possible. Today’s superplasticizers are extremely versatile and can be adjusted to individual technological specifications. However, the other side of the coin of versatility is that cementitious systems incorporating superplasticizers have become more sensitive against environmental influences, such as the environmental temperature, which may cause unwanted effects or demand for supplementary admixture use such as stabilizing admixtures. Hence, concrete mixture composition with admixtures demands for a high level of expertise and often there is lack of awareness about the mode of operation of rheology modifying admixtures among concrete technologists. The paper gives a comprehensive overview about rheology modifying admixtures such as superplasticizers or stabilizing agents, and how they can be used depending upon the application in the most favourable way. Based on experiences with the sub-Saharan African concreting boundary conditions, which exhibit many challenges in terms of environmental boundary conditions and construction site logistics, conclusions are finally drawn, how admixtures can be used in the most beneficial way to improve the concrete casting situation

    APPLICATION OF STEEL FIBRES IN ALKALI-ACTIVATED MORTARS

    Get PDF
    Alkali-activated materials are ideal for the repair of concrete structures in harsh environmental conditions due to their high durability in chemically aggressive environments. However, slag-based mortars, in particular, are prone to shrinkage and associated cracks. In this respect, the application of steel fibres is one solution to reduce the formation of shrinkage induced cracks and to improve post cracking behaviour of these mortars. This study investigated the influence of two different types of steel fibres on the tensile properties of two alkali-activated mortars. Direct tensile tests and single fibre pull-outs were performed to analyse the determining failure modes both on macro and micro scale. Mechanical testing was accompanied by non-destructive testing methods such as digital image correlation and acoustic emission for a detailed analysis of the fracture process

    Steel reinforcement corrosion in alkali-activated fly ash mortars

    Get PDF
    Corrosion of steel rebars in concrete presents one of the main deterioration mechanisms limiting service life of the reinforced structures. The corrosion is accompanied by an expansion of the corrosion products causing high pressures, concrete cracking and finally spalling of a cover layer. Critical chloride concentration, loss of alkalinity and modeling of the steel corrosion are in researchers\u27 spotlight for decades, however reinforcement corrosion in alkali activated materials is insufficiently described and understood yet. In this work, the steel reinforcement corrosion in alkali-activated fly ash mortars is investigated in terms of electrochemical behaviour of the reinforced mortars exposed to aggressive environments such as leaching, carbonation and chloride ingress. A selected geopolymer mixture based on hard coal fly ash activated with sodium hydroxide and sodium silicate solutions is used for the steel reinforcement-corrosion experiments. The formation of passive layer on the steel rebars is observed after approx. two weeks of hardening at laboratory temperature. However, alternative heat-treatment at 80°C for several hours leads to immediate formation of the passive layer as well as to a faster strength gain (80 MPa after 24h at 80°C). Chloride-induced corrosion, leaching and carbonation resistance of the alkali activated fly ash-based concrete is studied, where leaching in deionized water or carbonation under natural conditions (~0.04 % CO2) for 300 days did not lead to corrosion of the embedded steel. On the other hand, accelerated carbonation under 100 % CO2 atmosphere lead to depassivation within two weeks. Please click Additional Files below to see the full abstract

    Structure, acid-resistance and high-temperature behavior of silica-based one-part geopolymers and geopolymer-zeolite composites

    Get PDF
    One-part geopolymers (OPGs) are a sort of alkali-activated materials (AAMs) which production avoids the use of highly-alkaline activator-solutions and contributes to a better acceptance of alternative mineral binders in terms of safety-related and economic aspects. In the present contribution OPGs were synthesized by blending silica sources (two industrial silicas and two biogenic silicas) with sodium aluminate and only water must be added to initiate the hardening, i.e. mixing is performed in the same way as for conventional Portland cements. The OPGs were characterized by XRD, and SEM and the degrees of reaction of the silicas were determined by a chemical dissolution method. The industrial silicas led to the formation of geopolymer-zeolite composites, that contained, besides geopolymeric gel, crystalline tectosilicates (e.g. zeolite A and hydrosodalite) and depending on the starting composition also unreacted silica. The biogenic silicas provided a higher reactivity and avoided the formation of crystallite by-products. The differences in the microstructures caused differences in the mechanical strength of the specimens [1, 2]. The treatment of the OPG composites at moderate elevated temperatures revealed promising behavior on thermal dehydration in terms of shrinkage and residual strength up to 700 °C. Above 700 °C sintering and partial melting occurred, and new phase formation commenced. After exposure to 1000 °C the specimens appeared virtually amorphous or formed stuffed silica structures of nepheline- or carnegieite-type type [3]. The investigations of the OPG based mortars on their resistance against sulfuric acid in accordance with DIN 19573 (Appendix A) revealed very high residual strengths up to 78 % after treatment with H2SO4 (pH 1) for 70d. A mechanism of dissolution of the primary aluminosilicate reaction products of the pastes and the precipitation of a silica gel that protects the remaining aluminosilicates and decelerates further corrosion was found to be the main reason for the good performance under acidic conditions. The addition of CaO-containing feedstocks enhanced hardening, but at a certain content the resistance against sulfuric acid decreased, due to the formation of gypsum on exposure to sulfate. In addition, the mortars exhibited excellent shrinkage behavior as well as good bond to concrete substrates with pull-off strength up to \u3e 3 MPa. The workability of the fresh mortars provided very good manual applicability; automatic applications such as sprayed and spun mortars will require further optimization regarding rheological properties. In summary, the studied OPG are promising materials for the construction and the repair of concrete structures, such as sewers, that are affected by biogenic sulfuric acid corrosion. [1] Sturm, P., Greiser, S., Gluth, G. J. G., Jäger, C. & Brouwers, H. J. H. Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods. J. Mater. Sci. 50, 6768–6778 (2015). [2] Sturm, P., Gluth, G. J. G., Brouwers, H. J. H. & Kühne, H.-C. Synthesizing one-part geopolymers from rice husk ash. Constr. Build. Mater. 124, 961–966 (2016). [3] Sturm, P., Gluth, G. J. G., Simon, S., Brouwers, H. J. H. & Kühne, H.-C. The effect of heat treatment on the mechanical and structural properties of one-part geopolymer-zeolite composites. Thermochim. Acta 635, 41–58 (2016)

    Superplasticizer and Shrinkage Reducing Admixture Dosages for Microfine Cement in Grout Systems

    Get PDF
    Grouts have numerous applications including crack repair as maintenance in construction industries. Microfine cements are intensively used for high strength mortar and grout products. They are ideal for injection grouting in structural repair. Such grouts should have suitable rheological properties to be injectable, especially those used in repair and rehabilitation. The use of superplasticizers (SP) in these products is thus becoming increasingly crucial to achieve favorable workability and viscosity properties. A difficulty in such grouts is the plastic shrinkage due to finer particles used. It is thus necessary to determine optimum SP and shrinkage reducing admixture (SRA) dosages for a microfine cement based grout. In this study, a saturation dosage was decided from two Polycarboxylate ether (PCE) based SPs in relation to neat cement using slump flow and rheological parameters. A range of grout mixtures was formulated containing micro silica (MS) and fly ash (FA), and tested for suitable rheological and mechanical parameters. Based on the results, a grout mixture with MS and FA was selected to determine optimum SRA content. According to the results, a SP dosage of 3% by weight of neat cement is sufficient to achieve saturation. The grout material including MS and FA can produce comparable properties to neat cement grout. MS is found to improve compressive strength within the range considered, whereas a higher FA content provides favourable rheological properties. Finally, a SRA dosage of 4%, which could reduce the shrinkage by about 43% after 28d days, is determined for the grout system

    Concrete casting robustness improvement due to active rheology

    No full text
    With ongoing innovation in process technology, the challenges of concrete technology are more and more focused on the rheological optimisation for these processes, since improper mixture stability or poor compaction ability negatively affect the concrete homogeneity and quality. However, along with the increasing complexity of today’s concrete mixture compositions, concrete becomes more prone to failure regarding the casting process. Variable properties of the raw materials typically cause changing workability. The reasons can be found among others in scattering water contents, physical or chemical properties of the cement or varying environmental temperatures. Robustness in the delicately adjusted rheology, however, is of utmost importance for modern and future process technology, from sprayed concrete over pumpable concrete towards 3D-printing, with regard to the long-term strength, the function and the durability. Typically, material induced changes cannot be identified easily due to the complex interactions of concrete constituents. Therefore, a precise and prompt counteraction is impossible. However, it is known that the yield stress can be controlled by addition of supplementary superplasticizer or stabilising agent. In combination with computerized process observation tools that can rapidly interpret and react on changes in the rheology, it is therefore thinkable, that only these two admixture types can adjust the rheology steadily and permanently, regardless of the actual root cause for observed macroscopic rheology change. The presentation will firstly give a comprehensive overview of effects at the interface between pore solution, particles and hydrates, which affect the rheology of fresh concrete. Secondly, ways are recommended how the rheology can be actively manipulated before eventually computerized methods are demonstrated that help to actively and rapidly assess and counteract performance scatter during steady casting processes
    corecore