182 research outputs found

    Hamilton decompositions of regular tournaments

    Full text link
    We show that every sufficiently large regular tournament can almost completely be decomposed into edge-disjoint Hamilton cycles. More precisely, for each \eta>0 every regular tournament G of sufficiently large order n contains at least (1/2-\eta)n edge-disjoint Hamilton cycles. This gives an approximate solution to a conjecture of Kelly from 1968. Our result also extends to almost regular tournaments.Comment: 38 pages, 2 figures. Added section sketching how we can extend our main result. To appear in the Proceedings of the LM

    An Ore-type theorem for perfect packings in graphs

    Full text link
    We say that a graph G has a perfect H-packing (also called an H-factor) if there exists a set of disjoint copies of H in G which together cover all the vertices of G. Given a graph H, we determine, asymptotically, the Ore-type degree condition which ensures that a graph G has a perfect H-packing. More precisely, let \delta_{\rm Ore} (H,n) be the smallest number k such that every graph G whose order n is divisible by |H| and with d(x)+d(y)\geq k for all non-adjacent x \not = y \in V(G) contains a perfect H-packing. We determine \lim_{n\to \infty} \delta_{\rm Ore} (H,n)/n.Comment: 23 pages, 1 figure. Extra examples and a sketch proof of Theorem 4 added. To appear in the SIAM Journal on Discrete Mathematic

    Matchings in 3-uniform hypergraphs

    Full text link
    We determine the minimum vertex degree that ensures a perfect matching in a 3-uniform hypergraph. More precisely, suppose that H is a sufficiently large 3-uniform hypergraph whose order n is divisible by 3. If the minimum vertex degree of H is greater than \binom{n-1}{2}-\binom{2n/3}{2}, then H contains a perfect matching. This bound is tight and answers a question of Han, Person and Schacht. More generally, we show that H contains a matching of size d\le n/3 if its minimum vertex degree is greater than \binom{n-1}{2}-\binom{n-d}{2}, which is also best possible. This extends a result of Bollobas, Daykin and Erdos.Comment: 18 pages, 1 figure. To appear in JCT

    k-Ordered Hamilton cycles in digraphs

    Get PDF
    Given a digraph D, the minimum semi-degree of D is the minimum of its minimum indegree and its minimum outdegree. D is k-ordered Hamiltonian if for every ordered sequence of k distinct vertices there is a directed Hamilton cycle which encounters these vertices in this order. Our main result is that every digraph D of sufficiently large order n with minimum semi-degree at least (n+k)/2 -1 is k-ordered Hamiltonian. The bound on the minimum semi-degree is best possible. An undirected version of this result was proved earlier by Kierstead, S\'ark\"ozy and Selkow

    Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions

    Full text link
    In a sequence of four papers, we prove the following results (via a unified approach) for all sufficiently large nn: (i) [1-factorization conjecture] Suppose that nn is even and D≥2⌈n/4⌉−1D\geq 2\lceil n/4\rceil -1. Then every DD-regular graph GG on nn vertices has a decomposition into perfect matchings. Equivalently, χ′(G)=D\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D≥⌊n/2⌋D \ge \lfloor n/2 \rfloor . Then every DD-regular graph GG on nn vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions of Nash-Williams from 1970. The above bounds are best possible. In the current paper, we show the following: suppose that GG is close to a complete balanced bipartite graph or to the union of two cliques of equal size. If we are given a suitable set of path systems which cover a set of `exceptional' vertices and edges of GG, then we can extend these path systems into an approximate decomposition of GG into Hamilton cycles (or perfect matchings if appropriate).Comment: We originally split the proof into four papers, of which this was the third paper. We have now combined this series into a single publication [arXiv:1401.4159v2], which will appear in the Memoirs of the AMS. 29 pages, 2 figure

    Hamiltonian degree sequences in digraphs

    Get PDF
    We show that for each \eta>0 every digraph G of sufficiently large order n is Hamiltonian if its out- and indegree sequences d^+_1\le ... \le d^+_n and d^- _1 \le ... \le d^-_n satisfy (i) d^+_i \geq i+ \eta n or d^-_{n-i- \eta n} \geq n-i and (ii) d^-_i \geq i+ \eta n or d^+_{n-i- \eta n} \geq n-i for all i < n/2. This gives an approximate solution to a problem of Nash-Williams concerning a digraph analogue of Chv\'atal's theorem. In fact, we prove the stronger result that such digraphs G are pancyclic.Comment: 17 pages, 2 figures. Section added which includes a proof of a conjecture of Thomassen for large tournaments. To appear in JCT

    A Preliminary Study of Soundscape Analysis as a Measurement of Ecosystem Health

    Get PDF
    In this study, acoustic ecology, the analysis of soundscapes -- composed of geophony, biophony, and anthrophony -- is applied as a potential measurement of ecosystem health. Recordings were taken from four locations in the greater Chicago area. By combining traditional ecological assessments including soil analysis, worm density surveys, and vegetation surveys, and correlating the results with acoustic data we highlight the value of soundscape analysis and suggest lines of future inquiry
    • …
    corecore