8 research outputs found
Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography
Aims Although cardiac hybrid imaging, fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA), provides important complementary diagnostic information for coronary artery disease (CAD) assessment, no prognostic data exist on the predictive value of cardiac hybrid imaging. Hence, the aim of this study was to assess the prognostic value of hybrid SPECT/CCTA images. Methods and results Of 335 consecutive patients undergoing a 1-day stress/rest 99mTc-tetrofosmin SPECT and a CCTA, acquired on stand-alone scanners and fused to obtain cardiac hybrid images, follow-up was obtained in 324 patients (97%). Survival free of all-cause death or non-fatal myocardial infarction (MI) and free of major adverse cardiac events (MACE: death, MI, unstable angina requiring hospitalization, coronary revascularizations) was determined using the Kaplan-Meier method for the following groups: (i) stenosis by CCTA and matching reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; and (iii) normal finding by CCTA and SPECT. Cox's proportional hazard regression was used to identify independent predictors for cardiac events. At a median follow-up of 2.8 years (25th-75th percentile: 1.9-3.6), 69 MACE occurred in 47 patients, including 20 death/MI. A corresponding matched hybrid image finding was associated with a significantly higher death/MI incidence (P < 0.005) and proved to be an independent predictor for MACE. The annual death/MI rate was 6.0, 2.8, and 1.3% for patients with matched, unmatched, and normal findings. Conclusion Cardiac hybrid imaging allows risk stratification in patients with known or suspected CAD. A matched defect on hybrid image is a strong predictor of MAC
Inter-scan variability of coronary artery calcium scoring assessed on 64-multidetector computed tomography vs. dual-source computed tomography: a head-to-head comparison
Aims Coronary artery calcium (CAC) scoring has emerged as a tool for risk stratification and potentially for monitoring response to risk factor modification. Therefore, repeat measurements should provide robust results and low inter-scanner variability for allowing meaningful comparison. The purpose of this study was to investigate inter-scanner variability of CAC for Agatston, volume, and mass scores by head-to-head comparison using two different cardiac computed tomography scanners: 64-detector multislice CT (MSCT) and 64-slice dual-source CT (DSCT). Methods and results Thirty patients underwent CAC measurements on both 64-MSCT (GE LightSpeed XT scanner: 120 kV, 70 mAs, 2.5 mm slices) and 64-DSCT (Siemens Somatom Definition: 120 kV, 80 mAs, 3 mm slices) within <100 days (0-97). Retrospective intra-scan comparison revealed an excellent correlation. The excellent intra-scan (inter-observer) agreement was documented by narrow limits of agreement and a correlation coefficient of variation (COV) of r ≥ 0.99 (P < 0.001) for all CAC scores with a low COV for both scanners (64-MSCT/64-DSCT), i.e. Agatston (2.0/2.1%), mass (3.0/2.0%), and volume (4.7/3.9%). Inter-scanner comparison revealed larger Bland-Altman (BA) limits of agreement, despite high correlation (r ≥ 0.97) for all scores, with COV at 15.1, 21.6, and 44.9% for Agatston, mass, and volume scores. The largest BA limits were observed for volume scores (−1552.8 to 574.2), which was massively improved (−241.0 to 300.4, COV 11.5%) after reanalysing the 64-DSCT scans (Siemens) with GE software/workstation (while Siemens software/workstation does not allow cross-vendor analysis). Phantom measurements confirmed overestimation of volume scores by ‘syngo Ca-Scoring' (Siemens) software which should therefore be reviewed (vendor has been notified). Conclusion Intra- and inter-scan agreement of CAC measurement in a given data set is excellent. Inter-scanner variability is reasonable, particularly for Agatston units in the clinically most relevant range <1000. The use of different software solutions has a greater influence particularly on volume scores than the use of different scanner type
Impact of cardiac hybrid single-photon emission computed tomography/computed tomography imaging on choice of treatment strategy in coronary artery disease
Aims Cardiac hybrid imaging by fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA) provides important complementary diagnostic information for coronary artery disease (CAD) assessment. We aimed at assessing the impact of cardiac hybrid imaging on the choice of treatment strategy selection for CAD. Methods and results Three hundred and eighteen consecutive patients underwent a 1 day stress/rest 99mTc-tetrofosmin SPECT and a CCTA on a separate scanner for evaluation of CAD. Patients were divided into one of the following three groups according to findings in the hybrid images obtained by fusing SPECT and CCTA: (i) matched finding of stenosis by CCTA and corresponding reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; (iii) normal finding by both CCTA and SPECT. Follow-up was confined to the first 60 days after hybrid imaging as this allows best to assess treatment strategy decisions including the revascularization procedure triggered by its findings. Hybrid images revealed matched, unmatched, and normal findings in 51, 74, and 193 patients. The revascularization rate within 60 days was 41, 11, and 0% for matched, unmatched, and normal findings, respectively (P< 0.001 for all inter-group comparisons). Conclusion Cardiac hybrid imaging with SPECT and CCTA provides an added clinical value for decision making with regard to treatment strategy for CA
Image quality and radiation dose comparison of prospectively triggered low-dose CCTA: 128-slice dual-source high-pitch spiral versus 64-slice single-source sequential acquisition
Currently 64-multislice computed tomography (MSCT) scanners are the most widely used devices allowing low radiation dose coronary CT angiography (CCTA) with prospective ECG triggering. Latest 128-slice dual-source CT (DSCT) scanners offer prospective high-pitch spiral acquisition covering the heart during one single beat. We compared radiation dose and image quality from prospective 64-MSCT versus high-pitch spiral 128-slice DSCT scanning, as such data is lacking. CCTA of 50 consecutive patients undergoing 128-DSCT (2 × 64 × 0.6 mm collimation, 0.28 s rotation time, 3.4 pitch, 100-120 kV tube voltage and 320 mAs tube current-time product) were compared to CCTA of 50 heart rate (HR) and BMI matched patients undergoing 64-MSCT (64 × 0.625 mm collimation, 0.35 s rotation time, 100-120 kV tube voltage and 400-650 mA tube current). Image quality was rated on a 4-point scale by two independent cardiac imaging physicians (1 = excellent to 4 = non-diagnostic). Of 710 coronary segments assessed on 128-DSCT, 216 (30.4%) achieved an image quality score 1 excellent, 400 (56.3%) score 2, 76 (10.7%) score 3 and 18 (2.6%) score 4 (non-diagnostic). Of 737 coronary segments evaluated on 64-MSCT 271 (36.8%) had an image quality score of 1, 327 (44.4%) 2, 110 (14.9%) score 3, and 29 (3.9%) segments score 4. Average image quality score for both scanners was similar (P = 0.641). The mean heart rate during scanning was 58.7 ± 5.6 bpm on 128-DSCT and 59.0 ± 5.6 bpm on 64-MSCT, respectively. Mean effective radiation dose was 1.0 ± 0.2 mSv for 128-DSCT and 1.7 ± 0.6 mSv for 64-MSCT (P < 0.001). 128-DSCT with high-pitch spiral mode allows CCTA acquisition with reduced radiation dose at maintained image quality compared to 64-MSCT
Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression
BACKGROUND: Evaluation of novel cellular therapies in large-animal models and patients is currently hampered by the lack of imaging approaches that allow for long-term monitoring of viable transplanted cells. In this study, sodium iodide symporter (NIS) transgene imaging was evaluated as an approach to follow in vivo survival, engraftment, and distribution of human-induced pluripotent stem cell (hiPSC) derivatives in a pig model of myocardial infarction.
METHODS AND RESULTS: Transgenic hiPSC lines stably expressing a fluorescent reporter and NIS (NIS(pos)-hiPSCs) were established. Iodide uptake, efflux, and viability of NIS(pos)-hiPSCs were assessed in vitro. Ten (±2) days after induction of myocardial infarction by transient occlusion of the left anterior descending artery, catheter-based intramyocardial injection of NIS(pos)-hiPSCs guided by 3-dimensional NOGA mapping was performed. Dual-isotope single photon emission computed tomographic/computed tomographic imaging was applied with the use of (123)I to follow donor cell survival and distribution and with the use of (99m)TC-tetrofosmin for perfusion imaging. In vitro, iodide uptake in NIS(pos)-hiPSCs was increased 100-fold above that of nontransgenic controls. In vivo, viable NIS(pos)-hiPSCs could be visualized for up to 15 weeks. Immunohistochemistry demonstrated that hiPSC-derived endothelial cells contributed to vascularization. Up to 12 to 15 weeks after transplantation, no teratomas were detected.
CONCLUSIONS: This study describes for the first time the feasibility of repeated long-term in vivo imaging of viability and tissue distribution of cellular grafts in large animals. Moreover, this is the first report demonstrating vascular differentiation and long-term engraftment of hiPSCs in a large-animal model of myocardial infarction. NIS(pos)-hiPSCs represent a valuable tool to monitor and improve current cellular treatment strategies in clinically relevant animal models
Inter-scan variability of coronary artery calcium scoring assessed on 64-multidetector computed tomography vs. dual-source computed tomography: a head-to-head comparison
Intra- and inter-scan agreement of CAC measurement in a given data set is excellent. Inter-scanner variability is reasonable, particularly for Agatston units in the clinically most relevant range <1000. The use of different software solutions has a greater influence particularly on volume scores than the use of different scanner types