456 research outputs found
Lattice-Boltzmann Method for Geophysical Plastic Flows
We explore possible applications of the Lattice-Boltzmann Method for the
simulation of geophysical flows. This fluid solver, while successful in other
fields, is still rarely used for geotechnical applications. We show how the
standard method can be modified to represent free-surface realization of
mudflows, debris flows, and in general any plastic flow, through the
implementation of a Bingham constitutive model. The chapter is completed by an
example of a full-scale simulation of a plastic fluid flowing down an inclined
channel and depositing on a flat surface. An application is given, where the
fluid interacts with a vertical obstacle in the channel.Comment: in W. Wu, R.I. Borja (Edts.) Recent advances in modelling landslides
and debris flow, Springer Series in Geomechanics and Geoengineering (2014),
ISBN 978-3-319-11052-3, pp. 131-14
Nonleptonic Weak Decays of Bottom Baryons
Cabibbo-allowed two-body hadronic weak decays of bottom baryons are analyzed.
Contrary to the charmed baryon sector, many channels of bottom baryon decays
proceed only through the external or internal W-emission diagrams. Moreover,
W-exchange is likely to be suppressed in the bottom baryon sector.
Consequently, the factorization approach suffices to describe most of the
Cabibbo-allowed bottom baryon decays. We use the nonrelativistic quark model to
evaluate heavy-to-heavy and heavy-to-light baryon form factors at zero recoil.
When applied to the heavy quark limit, the quark model results do satisfy all
the constraints imposed by heavy quark symmetry. The decay rates and up-down
asymmetries for bottom baryons decaying into and
are calculated. It is found that the up-down asymmetry is negative except for
decay and for decay modes with in the final
state. The prediction for
is consistent with the recent CDF measurement. We also present
estimates for decays and compare with various model
calculations.Comment: 24 pages, to appear in Phys. Rev. Uncertainties with form factor q^2
dependence are discusse
Two-loop Anomalous Dimensions of Heavy Baryon Currents in Heavy Quark Effective Theory
We present results on the two-loop anomalous dimensions of the heavy baryon
HQET currents with arbitrary Dirac matrices
and . From our general result we obtain the two-loop
anomalous dimensions for currents with quantum numbers of the ground state
heavy baryons , and . As a by-product of our
calculation and as an additional check we rederive the known two-loop anomalous
dimensions of mesonic scalar, pseudoscalar, vector, axial vector and tensor
currents in massless QCD as well as in HQET.Comment: 21 pages, LaTeX, 2 figures are included in PostScript forma
Visual Similarity Perception of Directed Acyclic Graphs: A Study on Influencing Factors
While visual comparison of directed acyclic graphs (DAGs) is commonly
encountered in various disciplines (e.g., finance, biology), knowledge about
humans' perception of graph similarity is currently quite limited. By graph
similarity perception we mean how humans perceive commonalities and differences
in graphs and herewith come to a similarity judgment. As a step toward filling
this gap the study reported in this paper strives to identify factors which
influence the similarity perception of DAGs. In particular, we conducted a
card-sorting study employing a qualitative and quantitative analysis approach
to identify 1) groups of DAGs that are perceived as similar by the participants
and 2) the reasons behind their choice of groups. Our results suggest that
similarity is mainly influenced by the number of levels, the number of nodes on
a level, and the overall shape of the graph.Comment: Graph Drawing 2017 - arXiv Version; Keywords: Graphs, Perception,
Similarity, Comparison, Visualizatio
Hadronic B Decays to Charmed Baryons
We study exclusive B decays to final states containing a charmed baryon
within the pole model framework. Since the strong coupling for is larger than that for , the two-body charmful decay
has a rate larger than
as the former proceeds via the pole while the latter via the
pole. By the same token, the three-body decay receives less baryon-pole contribution than
. However, because the important charmed-meson
pole diagrams contribute constructively to the former and destructively to the
latter, has a rate slightly larger than
. It is found that one quarter of the rate comes from the resonant contributions. We discuss
the decays and
and stress that they are not color suppressed even though they can only proceed
via an internal W emission.Comment: 25 pages, 6 figure
Charmless Exclusive Baryonic B Decays
We present a systematical study of two-body and three-body charmless baryonic
B decays. Branching ratios for two-body modes are in general very small,
typically less than , except that \B(B^-\to p \bar\Delta^{--})\sim
1\times 10^{-6}. In general, due to
the large coupling constant for . For three-body modes we
focus on octet baryon final states. The leading three-dominated modes are with a branching ratio of
order for and
for . The penguin-dominated decays with strangeness
in the meson, e.g., and , have appreciable rates and the mass
spectrum peaks at low mass. The penguin-dominated modes containing a strange
baryon, e.g., , have
branching ratios of order . In contrast, the decay
rate of is smaller. We explain why some of
charmless three-body final states in which baryon-antibaryon pair production is
accompanied by a meson have a larger rate than their two-body counterparts:
either the pole diagrams for the former have an anti-triplet bottom baryon
intermediate state, which has a large coupling to the meson and the
nucleon, or they are dominated by the factorizable external -emission
process.Comment: 46 pages and 3 figures, to appear in Phys. Rev. D. Major changes are:
(i) Calculations of two-body baryonic B decays involving a Delta resonance
are modified, and (ii) Penguin-dominated modes B-> Sigma+N(bar)+p are
discusse
Good Random Matrices over Finite Fields
The random matrix uniformly distributed over the set of all m-by-n matrices
over a finite field plays an important role in many branches of information
theory. In this paper a generalization of this random matrix, called k-good
random matrices, is studied. It is shown that a k-good random m-by-n matrix
with a distribution of minimum support size is uniformly distributed over a
maximum-rank-distance (MRD) code of minimum rank distance min{m,n}-k+1, and
vice versa. Further examples of k-good random matrices are derived from
homogeneous weights on matrix modules. Several applications of k-good random
matrices are given, establishing links with some well-known combinatorial
problems. Finally, the related combinatorial concept of a k-dense set of m-by-n
matrices is studied, identifying such sets as blocking sets with respect to
(m-k)-dimensional flats in a certain m-by-n matrix geometry and determining
their minimum size in special cases.Comment: 25 pages, publishe
Isgur-Wise Function for in B-S Approach
In the heavy quark limit, the heavy baryon (Q=b or c) can be
regarded as composed of a heavy quark and a scalar light diquark which has good
spin and flavor quantum numbers. Based on this picture we establish the
Bethe-Salpeter (B-S) equation for in the leading order of
expansion. With the kernel containing both the scalar confinement and
one-gluon-exchange terms we solve the B-S equation numerically. The Isgur-Wise
function for is obtained numerically from our model.
Comparison with other model calculations are also presented. It seems that the
Isgur-Wise function for drops faster than that for . The differential and total decay widths for are given in the limit .Comment: 14 pages, 4 Postscript figure
Application of heavy-quark effective theory to lattice QCD: I. Power Corrections
Heavy-quark effective theory (HQET) is applied to lattice QCD with Wilson
fermions at fixed lattice spacing a. This description is possible because
heavy-quark symmetries are respected. It is desirable because the ultraviolet
cutoff in current numerical work and the heavy-quark mass are
comparable. Effects of both short distances, a and , are captured fully
into coefficient functions, which multiply the operators of the usual HQET.
Standard tools of HQET are used to develop heavy-quark expansions of lattice
observables and, thus, to propagate heavy-quark discretization errors. Three
explicit examples are given: namely, the mass, decay constant, and semileptonic
form factors of heavy-light mesons.Comment: 41 pp., no figs; Phys Rev D version, improving argument that an HQET
holds for all m_Q
Proton-Antiproton Annihilation into a Lambda_c-Antilambda_c Pair
The process p-pbar -> Lambda_c-Antilambda_c is investigated within the
handbag approach. It is shown that the dominant dynamical mechanism,
characterized by the partonic subprocess u-ubar -> c-cbar factorizes in the
sense that only the subprocess contains highly virtual partons, a gluon to
lowest order of perturbative QCD, while the hadronic matrix elements embody
only soft scales and can be parameterized in terms of helicity flip and
non-flip generalized parton distributions. Modelling these parton distributions
by overlaps of light-cone wave functions for the involved baryons we are able
to predict cross sections and spin correlation parameters for the process of
interest.Comment: 39 pages, 7 figures, problems with printout of figures resolved, Ref.
33 and referring sentences in section 4 change
- …