14 research outputs found

    On the Similarity of Functional Connectivity between Neurons Estimated across Timescales

    Get PDF
    A central objective in neuroscience is to understand how neurons interact. Such functional interactions have been estimated using signals recorded with different techniques and, consequently, different temporal resolutions. For example, spike data often have sub-millisecond resolution while some imaging techniques may have a resolution of many seconds. Here we use multi-electrode spike recordings to ask how similar functional connectivity inferred from slower timescale signals is to the one inferred from fast timescale signals. We find that functional connectivity is relatively robust to low-pass filtering—dropping by about 10% when low pass filtering at 10 hz and about 50% when low pass filtering down to about 1 Hz—and that estimates are robust to high levels of additive noise. Moreover, there is a weak correlation for physiological filters such as hemodynamic or Ca2+ impulse responses and filters based on local field potentials. We address the origin of these correlations using simulation techniques and find evidence that the similarity between functional connectivity estimated across timescales is due to processes that do not depend on fast pair-wise interactions alone. Rather, it appears that connectivity on multiple timescales or common-input related to stimuli or movement drives the observed correlations. Despite this qualification, our results suggest that techniques with intermediate temporal resolution may yield good estimates of the functional connections between individual neurons

    Grasping Objects with Environmentally Induced Position Uncertainty

    Get PDF
    Due to noisy motor commands and imprecise and ambiguous sensory information, there is often substantial uncertainty about the relative location between our body and objects in the environment. Little is known about how well people manage and compensate for this uncertainty in purposive movement tasks like grasping. Grasping objects requires reach trajectories to generate object-fingers contacts that permit stable lifting. For objects with position uncertainty, some trajectories are more efficient than others in terms of the probability of producing stable grasps. We hypothesize that people attempt to generate efficient grasp trajectories that produce stable grasps at first contact without requiring post-contact adjustments. We tested this hypothesis by comparing human uncertainty compensation in grasping objects against optimal predictions. Participants grasped and lifted a cylindrical object with position uncertainty, introduced by moving the cylinder with a robotic arm over a sequence of 5 positions sampled from a strongly oriented 2D Gaussian distribution. Preceding each reach, vision of the object was removed for the remainder of the trial and the cylinder was moved one additional time. In accord with optimal predictions, we found that people compensate by aligning the approach direction with covariance angle to maintain grasp efficiency. This compensation results in higher probability to achieve stable grasps at first contact than non-compensation strategies in grasping objects with directional position uncertainty, and the results provide the first demonstration that humans compensate for uncertainty in a complex purposive task

    How Haptic Size Sensations Improve Distance Perception

    Get PDF
    Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is challenging because the information from a single image confounds object size and distance. Though our brains frequently judge distances accurately, the underlying computations employed by the brain are not well understood. Our work illuminates these computions by formulating a family of probabilistic models that encompass a variety of distinct hypotheses about distance and size perception. We compare these models' predictions to a set of human distance judgments in an interception experiment and use Bayesian analysis tools to quantitatively select the best hypothesis on the basis of its explanatory power and robustness over experimental data. The central question is: whether, and how, human distance perception incorporates size cues to improve accuracy. Our conclusions are: 1) humans incorporate haptic object size sensations for distance perception, 2) the incorporation of haptic sensations is suboptimal given their reliability, 3) humans use environmentally accurate size and distance priors, 4) distance judgments are produced by perceptual “posterior sampling”. In addition, we compared our model's estimated sensory and motor noise parameters with previously reported measurements in the perceptual literature and found good correspondence between them. Taken together, these results represent a major step forward in establishing the computational underpinnings of human distance perception and the role of size information.National Institutes of Health (U.S.) (NIH grant R01EY015261)University of Minnesota (UMN Graduate School Fellowship)National Science Foundation (U.S.) (Graduate Research Fellowship)University of Minnesota (UMN Doctoral Dissertation Fellowship)National Institutes of Health (U.S.) (NIH NRSA grant F32EY019228-02)Ruth L. Kirschstein National Research Service Awar

    Inferring causal connectivity from pairwise recordings and optogenetics

    No full text
    To understand the neural mechanisms underlying brain function, neuroscientists aim to quantify causal interactions between neurons, for instance by perturbing the activity of neuron A and measuring the effect on neuron B. Recently, manipulating neuron activity using light-sensitive opsins, optogenetics, has increased the specificity of neural perturbation. However, using widefield optogenetic interventions, multiple neurons are usually perturbed, producing a confound -- any of the stimulated neurons can have affected the postsynaptic neuron making it challenging to discern which neurons produced the causal effect. Here, we show how such confounds produce large biases in interpretations. We explain how confounding can be reduced by combining instrumental variables (IV) and difference in differences (DiD) techniques from econometrics. Combined, these methods can estimate (causal) effective connectivity by exploiting the weak, approximately random signal resulting from the interaction between stimulation and the absolute refractory period of the neuron. In simulated neural networks, we find that estimates using ideas from IV and DiD outperform naive techniques suggesting that methods from causal inference can be useful to disentangle neural interactions in the brain
    corecore