449 research outputs found
Accurate photonic temporal mode analysis with reduced resources
The knowledge and thus characterization of the temporal modes of quantum
light fields is important in many areas of quantum physics ranging from
experimental setup diagnosis to fundamental-physics investigations. Recent
results showed how the auto-correlation function computed from continuous-wave
homodyne measurements can be a powerful way to access the temporal mode
structure. Here, we push forward this method by providing a deeper
understanding and by showing how to extract the amplitude and phase of the
temporal mode function with reduced experimental resources. Moreover, a
quantitative analysis allows us to identify a regime of parameters where the
method provides a trustworthy reconstruction, which we illustrate
experimentally
Decoherence-protected memory for a single-photon qubit
The long-lived, efficient storage and retrieval of a qubit encoded on a
photon is an important ingredient for future quantum networks. Although systems
with intrinsically long coherence times have been demonstrated, the combination
with an efficient light-matter interface remains an outstanding challenge. In
fact, the coherence times of memories for photonic qubits are currently limited
to a few milliseconds. Here we report on a qubit memory based on a single atom
coupled to a high-finesse optical resonator. By mapping and remapping the qubit
between a basis used for light-matter interfacing and a basis which is less
susceptible to decoherence, a coherence time exceeding 100 ms has been measured
with a time-independant storage-and-retrieval efficiency of 22%. This
demonstrates the first photonic qubit memory with a coherence time that exceeds
the lower bound needed for teleporting qubits in a global quantum internet.Comment: 3 pages, 4 figure
The Effect of Fragmentation in Trading on Market Quality in the UK Equity Market
We investigate the effects of fragmentation in equity markets on the quality of trading outcomes in a panel of FTSE stocks over the period 2008-2011. This period coincided with a great deal of turbulence in the UK equity markets which had multiple causes that need to be controlled for. To achieve this, we use the common correlated effects estimator for large heterogeneous panels. We extend this estimator to quantile regression to analyze the whole conditional distribution of market quality. We find that both fragmentation in visible order books and dark trading that is offered outside the visible order book lower volatility. But dark trading increases the variability of volatility, while visible fragmentation has the opposite effect in particular at the upper quantiles of the conditional distribution. The transition from a monopolistic to a fragmented market is non-monotone
A low stray light, high current, low energy electron source
A design of an electron gun system is presented whose stray light emission is reduced by about three orders of magnitude compared to a regular low-energy electron diffraction gun. This is achieved by a combination of a BaO cathode run at rather low temperature and a 30° tandem parallel-plate analyzer used as an optical baffle. The system provides a high beam current of several microampers at 50 eV beam energy. The system can be used down to ∼10 eV
Process tomography of ion trap quantum gates
A crucial building block for quantum information processing with trapped ions
is a controlled-NOT quantum gate. In this paper, two different sequences of
laser pulses implementing such a gate operation are analyzed using quantum
process tomography. Fidelities of up to 92.6(6)% are achieved for single gate
operations and up to 83.4(8)% for two concatenated gate operations. By process
tomography we assess the performance of the gates for different experimental
realizations and demonstrate the advantage of amplitude--shaped laser pulses
over simple square pulses. We also investigate whether the performance of
concatenated gates can be inferred from the analysis of the single gates
Neddylation regulates excitatory synaptic transmission and plasticity
Post-translational modifications, like phosphorylation, ubiquitylation, and sumoylation, have been shown to impact on synaptic neurotransmission by modifying pre- and postsynaptic proteins and therefore alter protein stability, localization, or protein-protein interactions. Previous studies showed that post-translational modifications are essential during the induction of synaptic plasticity, defined by a major reorganization of synaptic proteins. We demonstrated before that neddylation, a post-translational modification that covalently binds Nedd8 to lysine-residues, strongly affects neuronal maturation and spine stability. We now analysed the consequences of inhibiting neddylation on excitatory synaptic transmission and plasticity, which will help to narrow down possible targets, to make educated guesses, and test specific candidates. Here, we show that acute inhibition of neddylation impacts on synaptic neurotransmission before morphological changes occur. Our data indicate that pre- and postsynaptic proteins are neddylated since the inhibition of neddylation impacts on presynaptic release probability and postsynaptic receptor stabilization. In addition, blocking neddylation during the induction of long-term potentiation and long-term inhibition abolished both forms of synaptic plasticity. Therefore, this study shows the importance of identifying synaptic targets of the neddylation pathway to understand the regulation of synaptic transmission and plasticity.Fil: Brockmann, Marisa M.. Universitat Bonn; Alemania. Max Planck Institute Of Psychiatry; AlemaniaFil: Döngi, Michael. Universitat Bonn; AlemaniaFil: Einsfelder, Ulf. Universitat Bonn; AlemaniaFil: Körber, Nils. Universitat Bonn; AlemaniaFil: Refojo, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Stein, Valentin. Universitat Bonn; Alemani
Deterministic Shaping and Reshaping of Single-Photon Temporal Wave Functions
Thorough control of the optical mode of a single photon is essential for
quantum information applications. We present a comprehensive experimental and
theoretical study of a light-matter interface based on cavity quantum
electrodynamics. We identify key parameters like the phases of the involved
light fields and demonstrate absolute, flexible, and accurate control of the
time-dependent complex-valued wave function of a single photon over several
orders of magnitude. This capability will be an important tool for the
development of distributed quantum systems with multiple components that
interact via photons.Comment: main text + supplementary materia
- …