6,886 research outputs found
Tunable dynamical channel blockade in double-dot Aharonov-Bohm interferometers
We study electronic transport through an Aharonov-Bohm interferometer with
single-level quantum dots embedded in the two arms. The full counting
statistics in the shot-noise regime is calculated to first order in the
tunnel-coupling strength. The interplay of interference and charging energy in
the dots leads to a dynamical channel blockade that is tunable by the magnetic
flux penetrating the Aharonov-Bohm ring. We find super-Poissonian behavior with
diverging second and higher cumulants when the Aharonov-Bohm flux approaches an
integer multiple of the flux quantum.Comment: published version, 10 pages, 10 figure
Resonant Tunneling through Multi-Level and Double Quantum Dots
We study resonant tunneling through quantum-dot systems in the presence of
strong Coulomb repulsion and coupling to the metallic leads. Motivated by
recent experiments we concentrate on (i) a single dot with two energy levels
and (ii) a double dot with one level in each dot. Each level is twofold
spin-degenerate. Depending on the level spacing these systems are physical
realizations of different Kondo-type models. Using a real-time diagrammatic
formulation we evaluate the spectral density and the non-linear conductance.
The latter shows a novel triple-peak resonant structure.Comment: 4 pages, ReVTeX, 4 Postscript figure
Quantum tunneling through planar p-n junctions in HgTe quantum wells
We demonstrate that a p-n junction created electrically in HgTe quantum wells
with inverted band-structure exhibits interesting intraband and interband
tunneling processes. We find a perfect intraband transmission for electrons
injected perpendicularly to the interface of the p-n junction. The opacity and
transparency of electrons through the p-n junction can be tuned by changing the
incidence angle, the Fermi energy and the strength of the Rashba spin-orbit
interaction. The occurrence of a conductance plateau due to the formation of
topological edge states in a quasi-one-dimensional p-n junction can be switched
on and off by tuning the gate voltage. The spin orientation can be
substantially rotated when the samples exhibit a moderately strong Rashba
spin-orbit interaction.Comment: 4 pages, 4 figure
Frequency-Dependent Current Noise through Quantum-Dot Spin Valves
We study frequency-dependent current noise through a single-level quantum dot
connected to ferromagnetic leads with non-collinear magnetization. We propose
to use the frequency-dependent Fano factor as a tool to detect single-spin
dynamics in the quantum dot. Spin precession due to an external magnetic and/or
a many-body exchange field affects the Fano factor of the system in two ways.
First, the tendency towards spin-selective bunching of the transmitted
electrons is suppressed, which gives rise to a reduction of the low-frequency
noise. Second, the noise spectrum displays a resonance at the Larmor frequency,
whose lineshape depends on the relative angle of the leads' magnetizations.Comment: 12 pages, 15 figure
Influence of disorder on the ferromagnetism in diluted magnetic semiconductors
Influence of disorder on the ferromagnetic phase transition in diluted
(III,Mn)V semiconductors is investigated analytically. The regime of small
disorder is addressed, and the enhancement of the critical temperature by
disorder is found both in the mean field approximation and from the analysis of
the zero temperature spin stiffness. Due to disorder, the spin wave
fluctuations around the ferromagnetically ordered state acquire a finite mass.
At large charge carrier band width, the spin wave mass squared becomes
negative, signaling the breakdown of the ferromagnetic ground state and the
onset of a noncollinear magnetic order.Comment: Replaced with revised version. 10 pages, 3 figure
Cotunneling at resonance for the single-electron transistor
We study electron transport through a small metallic island in the
perturbative regime. Using a recently developed diagrammatic technique, we
calculate the occupation of the island as well as the conductance through the
transistor in forth order in the tunneling matrix elements, a process referred
to as cotunneling. Our formulation does not require the introduction of a
cut-off. At resonance we find significant modifications of previous theories
and good agreement with recent experiments.Comment: 5 pages, Revtex, 5 eps-figure
Contribution of Scalar Loops to the Three-Photon Decay of the Z
I corrected 3 mistakes from the first version: that were an omitted Feynman
integration in the function f^3_{ij}, a factor of 2 in front of log f^3_{ij} in
eq.2 and an overall factor of 2 in Fig.1 c). The final result is changed
drastically. Doing an expansion in the Higgs mass I show that the matrix
element is identically 0 in the order (MZ/MH)^2, which is due to gauge
invariance. Left with an amplitude of the order (MZ/MH)^4 the final result is
that the scalar contribution to this decay rate is several orders of magnitude
smaller than those of the W boson and fermions.Comment: 6 pages, plain Tex, 1 figure available under request via fax or mail,
OCIP/C-93-5, UQAM-PHE-93/0
Adiabatic pumping through interacting quantum dots
We present a general formalism to study adiabatic pumping through interacting
quantum dots. We derive a formula that relates the pumped charge to the local,
instantaneous Green function of the dot. This formula is then applied to the
infinite-U Anderson model both for weak and strong tunnel-coupling strengths.Comment: 4 pages, 3 figure
Real-time renormalization group and cutoff scales in nonequilibrium applied to an arbitrary quantum dot in the Coulomb blockade regime
We apply the real-time renormalization group (RG) in nonequilibrium to an
arbitrary quantum dot in the Coulomb blockade regime. Within one-loop
RG-equations, we include self-consistently the kernel governing the dynamics of
the reduced density matrix of the dot. As a result, we find that relaxation and
dephasing rates generically cut off the RG flow. In addition, we include all
other cutoff scales defined by temperature, energy excitations, frequency, and
voltage. We apply the formalism to transport through single molecular magnets,
realized by the fully anisotropic Kondo model (with three different exchange
couplings J_x, J_y, and J_z) in a magnetic field h_z. We calculate the
differential conductance as function of bias voltage V and discuss a quantum
phase transition which can be tuned by changing the sign of J_x J_y J_z via the
anisotropy parameters. Finally, we calculate the noise S(Omega) at finite
frequency Omega for the isotropic Kondo model and find that the dephasing rate
determines the height of the shoulders in dS(\Omega)/d Omega near Omega=V.Comment: 16 pages, 7 figure
Disorder-Induced Multiple Transition involving Z2 Topological Insulator
Effects of disorder on two-dimensional Z2 topological insulator are studied
numerically by the transfer matrix method. Based on the scaling analysis, the
phase diagram is derived for a model of HgTe quantum well as a function of
disorder strength and magnitude of the energy gap. In the presence of sz
non-conserving spin-orbit coupling, a finite metallic region is found that
partitions the two topologically distinct insulating phases. As disorder
increases, a narrow-gap topologically trivial insulator undergoes a series of
transitions; first to metal, second to topological insulator, third to metal,
and finally back to trivial insulator. We show that this multiple transition is
a consequence of two disorder effects; renormalization of the band gap, and
Anderson localization. The metallic region found in the scaling analysis
corresponds roughly to the region of finite density of states at the Fermi
level evaluated in the self-consistent Born approximation.Comment: 5 pages, 5 figure
- …