59 research outputs found
Deviation of eyes and head in acute cerebral stroke
BACKGROUND: It is a well-known phenomenon that some patients with acute left or right hemisphere stroke show a deviation of the eyes (Prévost's sign) and head to one side. Here we investigated whether both right- and left-sided brain lesions may cause this deviation. Moreover, we studied the relationship between this phenomenon and spatial neglect. In contrast to previous studies, we determined not only the discrete presence or absence of eye deviation with the naked eye through clinical inspection, but actually measured the extent of horizontal eye-in-head and head-on-trunk deviation. In further contrast, measurements were performed early after stroke onset (1.5 days on average). METHODS: Eye-in-head and head-on-trunk positions were measured at the bedside in 33 patients with acute unilateral left or right cerebral stroke consecutively admitted to our stroke unit. RESULTS: Each single patient with spatial neglect and right hemisphere lesion showed a marked deviation of the eyes and the head to the ipsilesional, right side. The average spontaneous gaze position in this group was 46° right, while it was close to the saggital body midline (0°) in the groups with acute left- or right-sided stroke but no spatial neglect as well as in healthy subjects. CONCLUSION: A marked horizontal eye and head deviation observed ~1.5 days post-stroke is not a symptom associated with acute cerebral lesions per se, nor is a general symptom of right hemisphere lesions, but rather is specific for stroke patients with spatial neglect. The evaluation of the patient's horizontal eye and head position thus could serve as a brief and easy way helping to diagnose spatial neglect, in addition to the traditional paper-and-pencil tests
Fine-Tuning and the Stability of Recurrent Neural Networks
A central criticism of standard theoretical approaches to constructing stable, recurrent model networks is that the synaptic connection weights need to be finely-tuned. This criticism is severe because proposed rules for learning these weights have been shown to have various limitations to their biological plausibility. Hence it is unlikely that such rules are used to continuously fine-tune the network in vivo. We describe a learning rule that is able to tune synaptic weights in a biologically plausible manner. We demonstrate and test this rule in the context of the oculomotor integrator, showing that only known neural signals are needed to tune the weights. We demonstrate that the rule appropriately accounts for a wide variety of experimental results, and is robust under several kinds of perturbation. Furthermore, we show that the rule is able to achieve stability as good as or better than that provided by the linearly optimal weights often used in recurrent models of the integrator. Finally, we discuss how this rule can be generalized to tune a wide variety of recurrent attractor networks, such as those found in head direction and path integration systems, suggesting that it may be used to tune a wide variety of stable neural systems
Distributed representations of the "preparatory set" in the frontal oculomotor system: a TMS study
<p>Abstract</p> <p>Background</p> <p>The generation of saccades is influenced by the level of "preparatory set activity" in cortical oculomotor areas. This preparatory activity can be examined using the gap-paradigm in which a temporal gap is introduced between the disappearance of a central fixation target and the appearance of an eccentric target.</p> <p>Methods</p> <p>Ten healthy subjects made horizontal pro- or antisaccades in response to lateralized cues after a gap period of 200 ms. Single-pulse transcranial magnetic stimulation (TMS) was applied to the dorsolateral prefrontal cortex (DLPFC), frontal eye field (FEF), or supplementary eye field (SEF) of the right hemisphere 100 or 200 ms after the disappearance of the fixation point. Saccade latencies were measured to probe the disruptive effect of TMS on saccade preparation. In six individuals, we gave realistic sham TMS during the gap period to mimic auditory and somatosensory stimulation without stimulating the cortex.</p> <p>Results</p> <p>TMS to DLPFC, FEF, or SEF increased the latencies of contraversive pro- and antisaccades. This TMS-induced delay of saccade initiation was particularly evident in conditions with a relatively high level of preparatory set activity: The increase in saccade latency was more pronounced at the end of the gap period and when participants prepared for prosaccades rather than antisaccades. Although the "lesion effect" of TMS was stronger with prefrontal TMS, TMS to FEF or SEF also interfered with the initiation of saccades. The delay in saccade onset induced by real TMS was not caused by non-specific effects because sham stimulation shortened the latencies of contra- and ipsiversive anti-saccades, presumably due to intersensory facilitation.</p> <p>Conclusion</p> <p>Our results are compatible with the view that the "preparatory set" for contraversive saccades is represented in a distributed cortical network, including the contralateral DLPFC, FEF and SEF.</p
- …