34 research outputs found

    Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    Get PDF
    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.Comment: 22 pages, 11 figures, to be published in Physics of Plasma

    Quantum network of neutral atom clocks

    Get PDF
    We propose a protocol for creating a fully entangled GHZ-type state of neutral atoms in spatially separated optical atomic clocks. In our scheme, local operations make use of the strong dipole-dipole interaction between Rydberg excitations, which give rise to fast and reliable quantum operations involving all atoms in the ensemble. The necessary entanglement between distant ensembles is mediated by single-photon quantum channels and collectively enhanced light-matter couplings. These techniques can be used to create the recently proposed quantum clock network based on neutral atom optical clocks. We specifically analyze a possible realization of this scheme using neutral Yb ensembles.Comment: 13 pages, 11 figure

    Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons

    Full text link
    Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 1001000  μs100-1000\;\rm \mu s time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction

    Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots

    Full text link
    In this chapter we review the use of spins in optically-active InAs quantum dots as the key physical building block for constructing a quantum repeater, with a particular focus on recent results demonstrating entanglement between a quantum memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded photonic qubit). This is a first step towards demonstrating entanglement between distant quantum memories (realized with quantum dots), which in turn is a milestone in the roadmap for building a functional quantum repeater. We also place this experimental work in context by providing an overview of quantum repeaters, their potential uses, and the challenges in implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W. Mitchell

    Interaction of electromagnetic waves and suprathermal electrons in the near-critical electric field limit

    No full text
    The velocity-space anisotropy of suprathermal electron distributions is a source of free energy that may destabilize plasma waves through a resonant interaction between the waves and the energetic electrons. In this work we use a suprathermal electron distribution appropriate for the case when the accelerating electric field is near-critical and we investigate the frequencies, wave numbers and propagation angles of the most unstable waves using a general dispersion relation. It is shown that if the electric field is sub-critical, the anisotropy is not enough to drive electromagnetic waves unstable, as the Landau damping of the waves overwhelms the drive through the anomalous Doppler resonance. In the case when the electric field is supercritical, two types of electromagnetic waves will be destabilized, the electron-whistler and the extraordinary electron wave. The number of electrons for destabilization of the latter is several orders of magnitude lower than for the electron-whistler wave. Consequently, the threshold for destabilization of the extraordinary electron wave is much lower

    La Villa des Peupliers : monographie d'une habitation à loyer modique pour retraités

    No full text
    We study the effect of resonances associated with complex molecular interaction of Rydberg atoms on Rydberg blockade. We show that densely spaced molecular potentials between doubly excited atomic pairs become unavoidably resonant with the optical excitation at short interatomic separations. Such molecular resonances limit the coherent control of individual excitations in Rydberg blockade. As an illustration, we compute the molecular interaction potentials of Rb atoms near the 100s states asymptote to characterize such detrimental molecular resonances and determine the resonant loss rate to molecules and inhomogeneous light shifts. Techniques to avoid the undesired effect of molecular resonances are discussed
    corecore