34 research outputs found
Electromagnetic waves destabilized by runaway electrons in near-critical electric fields
Runaway electron distributions are strongly anisotropic in velocity space.
This anisotropy is a source of free energy that may destabilize electromagnetic
waves through a resonant interaction between the waves and the energetic
electrons. In this work we investigate the high-frequency electromagnetic waves
that are destabilized by runaway electron beams when the electric field is
close to the critical field for runaway acceleration. Using a runaway electron
distribution appropriate for the near-critical case we calculate the linear
instability growth rate of these waves and conclude that the obliquely
propagating whistler waves are most unstable. We show that the frequencies,
wave numbers and propagation angles of the most unstable waves depend strongly
on the magnetic field. Taking into account collisional and convective damping
of the waves, we determine the number density of runaways that is required to
destabilize the waves and show its parametric dependences.Comment: 22 pages, 11 figures, to be published in Physics of Plasma
Quantum network of neutral atom clocks
We propose a protocol for creating a fully entangled GHZ-type state of
neutral atoms in spatially separated optical atomic clocks. In our scheme,
local operations make use of the strong dipole-dipole interaction between
Rydberg excitations, which give rise to fast and reliable quantum operations
involving all atoms in the ensemble. The necessary entanglement between distant
ensembles is mediated by single-photon quantum channels and collectively
enhanced light-matter couplings. These techniques can be used to create the
recently proposed quantum clock network based on neutral atom optical clocks.
We specifically analyze a possible realization of this scheme using neutral Yb
ensembles.Comment: 13 pages, 11 figure
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Runaway electrons with strongly anisotropic distributions present in
post-disruption tokamak plasmas can destabilize the extraordinary electron
(EXEL) wave. The present work investigates the dynamics of the quasi-linear
evolution of the EXEL instability for a range of different plasma parameters
using a model runaway distribution function valid for highly relativistic
runaway electron beams produced primarily by the avalanche process. Simulations
show a rapid pitch-angle scattering of the runaway electrons in the high energy
tail on the time scale. Due to the wave-particle
interaction, a modification to the synchrotron radiation spectrum emitted by
the runaway electron population is foreseen, exposing a possible experimental
detection method for such an interaction
Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots
In this chapter we review the use of spins in optically-active InAs quantum
dots as the key physical building block for constructing a quantum repeater,
with a particular focus on recent results demonstrating entanglement between a
quantum memory (electron spin qubit) and a flying qubit (polarization- or
frequency-encoded photonic qubit). This is a first step towards demonstrating
entanglement between distant quantum memories (realized with quantum dots),
which in turn is a milestone in the roadmap for building a functional quantum
repeater. We also place this experimental work in context by providing an
overview of quantum repeaters, their potential uses, and the challenges in
implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the
Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W.
Mitchell
Interaction of electromagnetic waves and suprathermal electrons in the near-critical electric field limit
The velocity-space anisotropy of suprathermal electron distributions is a source of free energy that may destabilize plasma waves through a resonant interaction between the waves and the energetic electrons. In this work we use a suprathermal electron distribution appropriate for the case when the accelerating electric field is near-critical and we investigate the frequencies, wave numbers and propagation angles of the most unstable waves using a general dispersion relation. It is shown that if the electric field is sub-critical, the anisotropy is not enough to drive electromagnetic waves unstable, as the Landau damping of the waves overwhelms the drive through the anomalous Doppler resonance. In the case when the electric field is supercritical, two types of electromagnetic waves will be destabilized, the electron-whistler and the extraordinary electron wave. The number of electrons for destabilization of the latter is several orders of magnitude lower than for the electron-whistler wave. Consequently, the threshold for destabilization of the extraordinary electron wave is much lower
La Villa des Peupliers : monographie d'une habitation à loyer modique pour retraités
We study the effect of resonances associated with complex molecular interaction of Rydberg atoms on Rydberg blockade. We show that densely spaced molecular potentials between doubly excited atomic pairs become unavoidably resonant with the optical excitation at short interatomic separations. Such molecular resonances limit the coherent control of individual excitations in Rydberg blockade. As an illustration, we compute the molecular interaction potentials of Rb atoms near the 100s states asymptote to characterize such detrimental molecular resonances and determine the resonant loss rate to molecules and inhomogeneous light shifts. Techniques to avoid the undesired effect of molecular resonances are discussed
Recommended from our members
A quantum network of clocks
The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.Physic