103 research outputs found

    Genome wide association study of Preserved Ratio Impaired Spirometry (PRISm)

    Get PDF
    Background: Preserved Ratio Impaired Spirometry (PRISm) is defined as FEV1 &lt;80% predicted, FEV1/FVC ≥0.70. PRISm is associated with respiratory symptoms and co-morbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated co-morbidities.Methods: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected SNPs reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait Linkage Disequilibrium score regression to estimate genome-wide genetic correlation between PRISM and pulmonary and extra-pulmonary traits. Phenome-wide association studies of top SNPs was performed. Results: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg = 0.62, p-value &lt;0.001) was observed, and genetic correlation with type II diabetes (rg = 0.12, p-value 0.007). PheWAS showed that 18 of 22 signals were associated with diabetic traits and 7 with blood pressure traits.Discussion: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals; rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B) have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extra-pulmonary co-morbidity.<br/

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications.

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases

    European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation

    Get PDF
    Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities

    European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation

    Get PDF
    Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities.</p

    Genome-Wide Association Study and Functional Characterization Identifies Candidate Genes for Insulin-Stimulated Glucose Uptake

    Get PDF
    Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in \u3e55,000 participants from three ancestry groups. We identified ten new loci (P \u3c 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD

    Associations of occupational and leisure-time physical activity with all-cause mortality: an individual participant data meta-analysis

    Get PDF
    This is the final version. Available from BMJ Publishing Group via the DOI in this record. Data availability statement. Data may be obtained from a third party and are not publicly available. All aggregated data are provided in this manuscript, including the supplementary files. Part of the individual participant are available on request, while other parts may be obtained from a third party and are not publicly available.Objective - Health effects of different physical activity domains (ie, during leisure time, work and transport) are generally considered positive. Using Active Worker consortium data, we assessed independent associations of occupational and leisure-time physical activity (OPA and LTPA) with all-cause mortality. Design - Two-stage individual participant data meta-analysis. Data source - Published and unpublished cohort study data. Eligibility criteria - Working participants aged 18–65 years. Methods - After data harmonisation, we assessed associations of OPA and LTPA with all-cause mortality. In stage 1, we analysed data from each study separately using Cox survival regression, and in stage 2, we pooled individual study findings with random-effects modelling. Results - In 22 studies with up to 590 497 participants from 11 countries, during a mean follow-up of 23.1 (SD: 6.8) years, 99 743 (16%) participants died. Adjusted for LTPA, body mass index, age, smoking and education level, summary (ie, stage 2) hazard ration (HRs) and 95% confidence interval (95% CI) for low, moderate and high OPA among men (n=2 96 134) were 1.01 (0.99 to 1.03), 1.05 (1.01 to 1.10) and 1.12 (1.03 to 1.23), respectively. For women (n=2 94 364), HRs (95% CI) were 0.98 (0.92 to 1.04), 0.96 (0.92 to 1.00) and 0.97 (0.86 to 1.10), respectively. In contrast, higher levels of LTPA were inversely associated with mortality for both genders. For example, for women HR for low, moderate and high compared with sedentary LTPA were 0.85 (0.81 to 0.89), 0.78 (0.74 to 0.81) and 0.75 (0.65 to 0.88), respectively. Effects were attenuated when adjusting for income (although data on income were available from only 9 and 6 studies, for men and women, respectively). Conclusion - Our findings indicate that OPA may not result in the same beneficial health effects as LTPA.The Netherlands Organisation for Health Research and DevelopmentFederal Ministry for Education and ResearchDeutsche Forschungsgemeinschaft (DFG)Martin-Luther-University of Halle-WittenbergFederal Employment OfficeMinistry of Education and Cultural Affairs of Saxony-AnhaltMinistry of Economics, Science and Digitization of Saxony-AnhaltEU European Regional Development Fund (ERDF)Swedish Research CouncilHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthGerman Federal Ministry of Education and Research (BMBF)State of Bavari
    corecore