139 research outputs found
Direct Observation of Longitudinally Polarised W Bosons
The three different helicity states of W bosons, produced in the reaction
e+e- -> W+W- -> l nu q q~ are studied using leptonic and hadronic W decays at
sqrt{s}=183GeV and 189GeV. The W polarisation is also measured as a function of
the scattering angle between the W- and the direction of the e- beam. The
analysis demonstrates that W bosons are produced with all three helicities, the
longitudinal and the two transverse states. Combining the results from the two
center-of-mass energies and with leptonic and hadronic W decays, the fraction
of longitudinally polarised W bosons is measured to be 0.261 +/- 0.051(stat.)
+/- 0.016(syst.) in agreement with the expectation from the Standard Model
Formation of the in Two-Photon Collisions at LEP
The two-photon width of the meson has been
measured with the L3 detector at LEP. The is studied in the decay
modes , KK, KK,
KK, , , and
using an integrated luminosity of 140 pb at GeV and
of 52 pb at GeV. The result is
(BR) keV. The dependence of the cross section is studied for
GeV. It is found to be better described by a Vector Meson
Dominance model form factor with a J-pole than with a -pole. In addition,
a signal of events is observed at the mass. Upper limits
for the two-photon widths of the , , and are also
given
Search for Scalar Leptons in e+e- collisions at \sqrt{s}=189 GeV
We report the result of a search for scalar leptons in e+e- collisions at 189
GeV centre-of-mass energy at LEP. No evidence for such particles is found in a
data sample of 176 pb^{-1}. Improved upper limits are set on the production
cross sections for these new particles. New exclusion contours in the parameter
space of the Minimal Supersymmetric Standard Model are derived, as well as new
lower limits on the masses of these supersymmetric particles. Under the
assumptions of common gaugino and scalar masses at the GUT scale, we set an
absolute lower limit on the mass of the lightest scalar electron of 65.5 Ge
Study of Z Boson Pair Production in e+e- Collisions at LEP at \sqrt{s}=189 GeV
The pair production of Z bosons is studied using the data collected by the L3
detector at LEP in 1998 in e+e- collisions at a centre-of-mass energy of 189
GeV. All the visible final states are considered and the cross section of this
process is measured to be 0.74 +0.15 -0.14 (stat.) +/- 0.04 (syst.) pb. Final
states containing b quarks are enhanced by a dedicated selection and their
production cross section is found to be 0.18 +0.09 -0.07 (stat.) +/- 0.02
(syst.) pb. Both results are in agreement with the Standard Model predictions.
Limits on anomalous couplings between neutral gauge bosons are derived from
these measurements
K0s K0s Final State in Two-Photon Collisions and Implications for Glueballs
The K0s K0s final state in two-photon collisions is studied with the L3
detector at LEP. The mass spectrum is dominated by the formation of the
f_2'(1525) tensor meson in the helicity-two state with a two-photon width times
the branching ratio into K Kbar of 76 +- 6 +- 11 eV. A clear signal for the
formation of the f_J(1710) is observed and it is found to be dominated by the
spin-two helicity-two state. No resonance is observed in the mass region around
2.2 GeV and an upper limit of 1.4 eV at 95% C.L. is derived for the two-photon
width times the branching ratio into K0s K0s for the glueball candidate
xi(2230)
Search for Heavy Isosinglet Neutrino in e+e- Annihilation at LEP
We report on a search for the first generation heavy neutrino that is an
isosinglet under the standard SU(2)_L gauge group. The data collected with the
L3 detector at center-of-mass energies between 130 GeV and 208 GeV are used.The
decay channel N_e --> eW is investigated and no evidence is found for a heavy
neutrino, N_e, in a mass range between 80 GeV and 205 GeV. Upper limits on the
mixing parameter between the heavy and light neutrino are derived
Study of Z Boson Pair Production in e^+e^- Interactions at \sqrt{s}=192 - 202 GeV
The cross section for the production of Z boson pairs is measured using the
data collected by the L3 detector at LEP in 1999 in e^+e^- collisions at
centre-of-mass energies ranging from 192 GeV up to 202 GeV. Events in all the
visible final states are selected, measuring the cross section of this process.
The special case of final states containing b quarks is also investigated. All
results are in agreement with the Standard Model predictions
Search for a Higgs Boson Decaying into Two Photons at LEP
A Higgs particle produced in association with a Z boson and decaying into two
photons is searched for in the data collected by the L3 experiment at LEP. All
possible decay modes of the Z boson are investigated. No signal is observed in
447.5 pb^-1 of data recorded at centre-of-mass energies up to 209 GeV. Limits
on the branching fraction of the Higgs boson decay into two photons as a
function of the Higgs mass are derived. A lower limit on the mass of a
fermiophobic Higgs boson is set at 105.4 GeV at 95% confidence level
Measurement of the W-Pair Production Cross Section and W-Decay Branching Fractions in Interactions at = 189 GeV
The data collected by the L3 experiment at LEP at a centre-of-mass energy of are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8~pb. The total cross section for W-pair production, combining all final states, is measured to be ~pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be . The results agree with the Standard Model predictions.The data collected by the L3 experiment at LEP at a centre-of-mass energy of 188.6 GeV are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8pb^-1. The total cross section for W-pair production, combining all final states, is measured to be sigma_WW = 16.24 +/- 0.37(stat.) +/- 0.22(syst.) pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be B(W ->qq) = [68.20 +/- 0.68 (stat.) +/- 0.33 (syst.) ] %. The results agree with the Standard Model predictions.The data collected by the L3 experiment at LEP at a centre-of-mass energy of 188.6 GeV are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8 pb â1 . The total cross section for W-pair production, combining all final states, is measured to be Ï WW =16.24±0.37 (stat.)±0.22 (syst.) pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be B (Wâqq)=[68.20±0.68 (stat.)±0.33 (syst.)]%. The results agree with the Standard Model predictions
Measurement of the Running of the Fine-Structure Constant
Small-angle Bhabha scattering data recorded at the Z resonance and large-angleBhabha scattering data recorded at \textrm{Ge\kern -0.1em V} bythe L3 detector at LEP are used to measure the running of the effective fine-structure constant for spacelike momentum transfers. The results are\begin{eqnarray*} \alpha^{-1}(-2.1 \mathrm{Ge\kern -0.1em V}^{2}) - \alpha^{-1}(-6.25 \mathrm{Ge\kern -0.1em V}^{2}) & = & 0.78 \pm 0.26 \\ \alpha^{-1}(-12.25 \mathrm{Ge\kern -0.1em V}^{2}) - \alpha^{-1}(-3434 \mathrm{Ge\kern -0.1em V}^{2}) & = & 3.80 \pm 1.29, \\\end{eqnarray*}in agreement with theoretical predictions.Bhabha scattering data recorded at \sqrt{s}=189 GeV by the L3 detector at LEP are used to measure the running of the effective fine-structure constant for spacelike momentum transfers. The results are alpha^-1(-2.1 GeV^2) - alpha^-1(-6.25 GeV^2) = 0.78 +/- 0.26 alpha^-1(-12.25 GeV^2) - alpha^-1(-3434 GeV^2) = 3.80 +/- 1.29, in agreement with theoretical predictions.Small-angle Bhabha scattering data recorded at the Z resonance and large-angle Bhabha scattering data recorded at s =189 GeV by the L3 detector at LEP are used to measure the running of the effective fine-structure constant for spacelike momentum transfers. The results are α â1 (â2.1 GeV 2 )âα â1 (â6.25 GeV 2 )=0.78±0.26 α â1 (â12.25 GeV 2 )âα â1 (â3434 GeV 2 )=3.80±1.29, in agreement with theoretical predictions
- âŠ