27 research outputs found
Few-Shot Panoptic Segmentation With Foundation Models
Current state-of-the-art methods for panoptic segmentation require an immense
amount of annotated training data that is both arduous and expensive to obtain
posing a significant challenge for their widespread adoption. Concurrently,
recent breakthroughs in visual representation learning have sparked a paradigm
shift leading to the advent of large foundation models that can be trained with
completely unlabeled images. In this work, we propose to leverage such
task-agnostic image features to enable few-shot panoptic segmentation by
presenting Segmenting Panoptic Information with Nearly 0 labels (SPINO). In
detail, our method combines a DINOv2 backbone with lightweight network heads
for semantic segmentation and boundary estimation. We show that our approach,
albeit being trained with only ten annotated images, predicts high-quality
pseudo-labels that can be used with any existing panoptic segmentation method.
Notably, we demonstrate that SPINO achieves competitive results compared to
fully supervised baselines while using less than 0.3% of the ground truth
labels, paving the way for learning complex visual recognition tasks leveraging
foundation models. To illustrate its general applicability, we further deploy
SPINO on real-world robotic vision systems for both outdoor and indoor
environments. To foster future research, we make the code and trained models
publicly available at http://spino.cs.uni-freiburg.de
Lanthanum : An s- and r-process indicator
The neutron capture cross section of 139La has been measured at a thermal energy of kT = 5 keV by means of the activation technique. Three irradiations were performed in a quasi-stellar neutron spectrum at the Karlsruhe 3.7 MV pulsed Van de Graaff accelerator, and the induced activities were measured by means of HPGe clover detectors. The final cross section of 113.7 ± 4.0 mbarn was found to be 10% higher than that previously assumed. Together with an earlier measurement at kT = 25 keV, Maxwellian-averaged neutron capture cross sections at the relevant thermal energies of the main s-process component, i.e., at kT = 8 and 23 keV, could be reliably interpolated. The s-abundances obtained on the basis of these data showed that the r-process contribution to solar lanthanum, Nr = N☉ - Ns, is 30%. This is in good agreement with the lanthanum abundance of extremely metal-poor and very r-process-rich stars
First Measurement of the Ru(p,)Rh Cross Section for the p-Process with a Storage Ring
This work presents a direct measurement of the Ru()Rh cross section via a novel technique using a storage ring,
which opens opportunities for reaction measurements on unstable nuclei. A
proof-of-principle experiment was performed at the storage ring ESR at GSI in
Darmstadt, where circulating Ru ions interacted repeatedly with a
hydrogen target. The Ru()Rh cross section between 9
and 11 MeV has been determined using two independent normalization methods. As
key ingredients in Hauser-Feshbach calculations, the -ray strength
function as well as the level density model can be pinned down with the
measured () cross section. Furthermore, the proton optical potential
can be optimized after the uncertainties from the -ray strength
function and the level density have been removed. As a result, a constrained
Ru()Rh reaction rate over a wide temperature range is
recommended for -process network calculations.Comment: 10 pages, 7 figs, Accepted for publication at PR
Measurements of proton-induced reactions on ruthenium-96 in the ESR at GSI
8th International Conference on Nuclear Physics at Storage Rings Stori11, October 9-14, 2011 Laboratori Nazionale di Frascati, Italy.
Storage rings offer the possibility of measuring proton- and alpha-induced reactions in inverse kinematics. The combination of this approachwith a radioactive beamfacility allows, in principle, the determination of the respective cross sections for radioactive isotopes. Such data are highly desired for a better understanding of astrophysical nucleosynthesis processes like the p-process. A pioneering experiment has been performed at the Experimental Storage Ring (ESR) at GSI using a stable 96Ru beam at 9-11 AMeV and a hydrogen target. Monte-Carlo simulations of the experiment were made using the Geant4 code. In these simulations, the experimental setup is described in detail and all reaction channels can be investigated. Based on the Geant4 simulations, a prediction of the shape of different spectral components can be performed. A comparison of simulated predictions with the experimental results shows a good agreement and allows the extraction of the cross section
Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN
The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction
Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN)
The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns
GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF
The neutron sensitivity of the C6D6 detector setup used at n_TOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has been implemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with a natC sample, showing an excellent agreement above 1 keV. At lower energies, an additional component in the measured natC yield has been discovered, which prevents the use of natC data for neutron background estimates at neutron energies below a few hundred eV. The origin and time structure of the neutron background have been derived from the simulations. Examples of the neutron background for two different samples are demonstrating the important role of accurate simulations of the neutron background in capture cross-section measurements
Neutron capture cross section measurement of 238U at the CERN n_TOF facility in the energy region from 1 eV to 700 keV
The aim of this work is to provide a precise and accurate measurement of the 238U(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross section of 238U should be further reduced to 1–3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were proposed and carried out within the 7th Framework Project ANDES of the European Commission. The results of one of these 238U(n,γ) measurements performed at the n_TOF CERN facility are presented in this work. The γ-ray cascade following the radiative neutron capture has been detected exploiting a setup of two C6D6 liquid scintillators. Resonance parameters obtained from this work are on average in excellent agreement with the ones reported in evaluated libraries. In the unresolved resonance region, this work yields a cross section in agreement with evaluated libraries up to 80 keV, while for higher energies our results are significantly higher
238U(n, γ) reaction cross section measurement with C6D6 detectors at the n_TOF CERN facility
The radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n_TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction