229 research outputs found

    Structural relaxation in a system of dumbbell molecules

    Full text link
    The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large elongations, universal relaxation laws for states near the glass transition are valid for parameters and time intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition principle for the reorientational α\alpha-process is violated for parameters and time intervals of interest for data analysis, and there is a strong breaking of the coupling of the α\alpha-relaxation scale for the diffusion process with that for representative density fluctuations and for dipole reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Test of mode coupling theory for a supercooled liquid of diatomic molecules. II. q-dependent orientational correlators

    Full text link
    Using molecular dynamics computer simulations we study the dynamics of a molecular liquid by means of a general class of time-dependent correlators S_{ll'}^m(q,t) which explicitly involve translational (TDOF) and orientational degrees of freedom (ODOF). The system is composed of rigid, linear molecules with Lennard- Jones interactions. The q-dependence of the static correlators S_{ll'}^m(q) strongly depend on l, l' and m. The time dependent correlators are calculated for l=l'. A thorough test of the predictions of mode coupling theory (MCT) is performed for S_{ll}^m(q,t) and its self part S_{ll}^{(s)m}(q,t), for l=1,..,6. We find a clear signature for the existence of a single temperature T_c, at which the dynamics changes significantly. The first scaling law of MCT, which involves the critical correlator G(t), holds for l>=2, but no critical law is observed. Since this is true for the same exponent parameter lambda as obtained for the TDOF, we obtain a consistent description of both, the TDOF and ODOF, with the exception of l=1. This different behavior for l \ne 1 and l=1 can also be seen from the corresponding susceptibilities (chi'')_{ll}^m(q,omega) which exhibit a minimum at about the same frequency omega_{min} for all q and all l \ne 1, in contrast to (chi'')_{11}^m(q,omega) for which omega'_{min} approx 10 omega_{min} . The asymptotic regime, for which the first scaling law holds, shrinks with increasing l. The second scaling law of MCT (time-temperature superposition principle) is reasonably fulfilled for l \ne 1 but not for l=1. Furthermore we show that the q- and (l,m)-dependence of the self part approximately factorizes, i.e. S_{ll}^{(s)m}(q,t) \cong C_l^{(s)}(t) F_s(q,t) for all m.Comment: 11 pages of RevTex, 16 figure

    Reorientational relaxation of a linear probe molecule in a simple glassy liquid

    Full text link
    Within the mode-coupling theory (MCT) for the evolution of structural relaxation in glass-forming liquids, correlation functions and susceptibility spectra are calculated characterizing the rotational dynamics of a top-down symmetric dumbbell molecule, consisting of two fused hard spheres immersed in a hard-sphere system. It is found that for sufficiently large dumbbell elongations, the dynamics of the probe molecule follows the same universal glass-transition scenario as known from the MCT results of simple liquids. The α\alpha-relaxation process of the angular-index-j=1 response is stronger, slower and less stretched than the one for j=2, in qualitative agreement with results found by dielectric-loss and depolarized-light-scattering spectroscopy for some supercooled liquids. For sufficiently small elongations, the reorientational relaxation occurs via large-angle flips, and the standard scenario for the glass-transition dynamics is modified for odd-j responses due to precursor phenomena of a nearby type-A MCT transition. In this case, a major part of the relaxation outside the transient regime is described qualitatively by the β\beta-relaxation scaling laws, while the α\alpha-relaxation scaling law is strongly disturbed.Comment: 40 pages. 10 figures as GIF-files, to be published in Phys. Rev.

    Test of mode coupling theory for a supercooled liquid of diatomic molecules.I. Translational degrees of freedom

    Full text link
    A molecular dynamics simulation is performed for a supercooled liquid of rigid diatomic molecules. The time-dependent self and collective density correlators of the molecular centers of mass are determined and compared with the predictions of the ideal mode coupling theory (MCT) for simple liquids. This is done in real as well as in momentum space. One of the main results is the existence of a unique transition temperature T_c, where the dynamics crosses over from an ergodic to a quasi-nonergodic behavior. The value for T_c agrees with that found earlier for the orientational dynamics within the error bars. In the beta- regime of MCT the factorization of space- and time dependence is satisfactorily fulfilled for both types of correlations. The first scaling law of ideal MCT holds in the von Schweidler regime, only, since the validity of the critical law can not be confirmed, due to a strong interference with the microscopic dynamics. In this first scaling regime a consistent description within ideal MCT emerges only, if the next order correction to the asymptotic law is taken into account. This correction is almost negligible for q=q_max, the position of the main peak in the static structure factor S(q), but becomes important for q=q_min, the position of its first minimum. The second scaling law, i.e. the time-temperature superposition principle, holds reasonably well for the self and collective density correlators and different values for q. The alpha-relaxation times tau_q^(s) and tau_q follow a power law in T-T_c over 2 -- 3 decades. The corresponding exponent gamma is weakly q-dependent and is around 2.55. This value is in agreement with the one predicted by MCT from the value of the von Schweidler exponent but at variance with the corresponding exponent gammaComment: 14 pages of RevTex, 19 figure

    Test of the semischematic model for a liquid of linear molecules

    Full text link
    We apply to a liquid of linear molecules the semischematic mode-coupling model, previously introduced to describe the center of mass (COM) slow dynamics of a network-forming molecular liquid. We compare the theoretical predictions and numerical results from a molecular dynamics simulation, both for the time and the wave-vector dependence of the COM density-density correlation function. We discuss the relationship between the presented analysis and the results from an approximate solution of the equations from molecular mode-coupling theory [R. Schilling and T. Scheidsteger, Phys. Rev. E 56 2932 (1997)].Comment: Revtex, 10 pages, 4 figure

    Static and Dynamic Properties of a Viscous Silica Melt Molecular Dynamics Computer Simulations

    Full text link
    We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from O(10^-2) Poise to O(10^2) Poise. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scattering data. At low temperatures the temperature dependence of the diffusion constants DD shows an Arrhenius law with activation energies which are in very good agreement with the experimental values. With increasing temperature we find that this dependence shows a cross-over to one which can be described well by a power-law, D\propto (T-T_c)^gamma. The critical temperature T_c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar cross-over in the viscosity we have evidence that the relaxation dynamics of the system changes from a flow-like motion of the particles, as described by the ideal version of mode-coupling theory, to a hopping like motion. We show that such a change of the transport mechanism is also observed in the product of the diffusion constant and the life time of a Si-O bond, or the space and time dependence of the van Hove correlation functions.Comment: 30 pages of Latex, 14 figure

    The mean-squared displacement of a molecule moving in a glassy system

    Full text link
    The mean-squared displacement (MSD) of a hard sphere and of a dumbbell molecule consisting of two fused hard spheres immersed in a dense hard-sphere system is calculated within the mode-coupling theory for ideal liquid-glass transitions. It is proven that the velocity correlator, which is the second time derivative of the MSD, is the negative of a completely monotone function for times within the structural-relaxation regime. The MSD is found to exhibit a large time interval for structural relaxation prior to the onset of the α\alpha-process which cannot be described by the asymptotic formulas for the mode-coupling-theory-bifurcation dynamics. The α\alpha-process for molecules with a large elongation is shown to exhibit an anomalously wide cross-over interval between the end of the von-Schweidler decay and the beginning of normal diffusion. The diffusivity of the molecule is predicted to vary non-monotonically as function of its elongation.Comment: 18 pages, 12 figures, Phys. Rev. E, in prin

    Propylene Carbonate Reexamined: Mode-Coupling β\beta Scaling without Factorisation ?

    Full text link
    The dynamic susceptibility of propylene carbonate in the moderately viscous regime above TcT_{\rm c} is reinvestigated by incoherent neutron and depolarised light scattering, and compared to dielectric loss and solvation response. Depending on the strength of α\alpha relaxation, a more or less extended β\beta scaling regime is found. Mode-coupling fits yield consistently λ=0.72\lambda=0.72 and Tc=182T_{\rm c}=182 K, although different positions of the susceptibility minimum indicate that not all observables have reached the universal asymptotics
    corecore