5 research outputs found

    Permeability of the Blood-Brain Barrier and Transport of Nanobodies Across the Blood-Brain Barrier

    No full text
    The presence of a blood-brain barrier (BBB) and a blood-cerebrospinal fluid barrier presents animmense challenge for effective delivery of therapeutics to the central nervous system. Many potential drugs, which are effective at their site of action, have failed due to the lack of distribution in sufficient quantity to the central nervous system (CNS). In consequence, many diseases of the central nervous system remain undertreated. Antibodies, IgG for example, are difficult to deliver to the CNS due to their size (~155 kDa), physico-chemical properties and the presence of Fc receptor on the blood-brain barrier. Smaller antibodies, like the recently developed nanobodies, may overcome the obstacle of the BBB and enter into the CNS. The nanobodies are the smallest available antigen-binding fragments harbouring the full antigenbinding capacity of conventional antibodies. They represent a new generation of therapeutics with exceptional properties, such as: recognition of unique epitopes, target specificity, high affinity, high solubility, high stability and high expression yields in cost-effective recombinant production. Their ability to permeate across the BBBmakes thema promising alternative for central nervous system disease therapeutics. In this review, we have systematically presented different aspects of the BBB, drug delivery mechanisms employed to cross the BBB, and finally nanobodies — a potential therapeutic molecule against neuroinfections

    Crossing the Blood-Brain Barrier by Neuroinvasive Pathogens

    No full text
    The penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) are important steps for all neuroinvasive pathogens. All of the ways of pathogens passing through the BBB are still unclear. Among known pathways, pathogen traversal can occur paracellularly, transcellularly or using a “Trojan horse” mechanism. The first step of translocation across the BBB is the interactions of the pathogen’s ligands with the receptors of the host brain cells. Lyme disease, the most common vector-borne disease in the temperate zones of Europe and North America, are caused by Borreliella species (former Borrelia burgdorferi sensu lato) that affects the peripheral and the CNS. In this review, we have presented various pathogen interactions with endothelial cells, which allow the disruption of the BBB so that the pathogens can pass across the BBB

    The Role of Meningococcal Porin B in Protein-Protein Interactions with Host Cells

    No full text
    Neisseria meningitidis is a Gram-negative diplococcus responsible for bacterial meningitis and fatal sepsis. Ligand-receptor interactions are one of the main steps in the development of neuroinvasion. Porin B (PorB), neisserial outer membrane protein (ligand), binds to host receptors and triggers many cell signalling cascades allowing the meningococcus to damage the host cells or induce immune cells responses via the TLR2-dependent mechanisms. In this paper, we present a brief review of the structure and function of PorB

    Contribution of Pili of S. Pneumoniae in the Onset of Meningitis

    No full text
    Bacterial meningitis is a devastating worldwide disease. Half of the survivors of meningitis remain with permanent neurological sequelae. The pathogenesis of meningitis is based on a complex host-pathogen interaction. Streptococcus pneumoniae is a life-threatening neuroinvasive pathogen that asymptomatically colonizes the upper respiratory tract. Adherence of pneumococci to the host epithelium is a prerequisite in the onset of streptococcal infections; such adherence is favored by the formation of bacterial pili. In this article, we will describe the pneumococcal pili and its contribution to the onset of meningitis
    corecore