4 research outputs found

    A community resource for paired genomic and metabolomic data mining

    Full text link

    Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV

    Full text link
    A search has been made for massive resonances decaying into a quark and a vector boson, qW or qZ, or a pair of vector bosons, WW, WZ, or ZZ, where each vector boson decays to hadronic final states. This search is based on a data sample corresponding to an integrated luminosity of 5.0 fb 121 of proton\u2013proton collisions collected in the CMS experiment at the LHC in 2011 at a center-of-mass energy of 7 TeV. For sufficiently heavy resonances the decay products of each vector boson are merged into a single jet, and the event effectively has a dijet topology. The background from QCD dijet events is reduced using recently developed techniques that resolve jet substructure. A 95% CL lower limit is set on the mass of excited quark resonances decaying into qW (qZ) at 2.38 TeV (2.15 TeV) and upper limits are set on the cross section for resonances decaying to qW, qZ, WW, WZ, or ZZ final states

    Search for long-lived particles in events with photons and missing energy in proton\u2013proton collisions at sqrt(s)=7 TeV

    Get PDF
    Results are presented from a search for long-lived neutralinos decaying into a photon and an invisible particle, a signature associated with gauge-mediated supersymmetry breaking in supersymmetric models. The analysis is based on a 4.9 inverse femtobarn sample of proton-proton collisions at 1as = 7 TeV, collected with the CMS detector at the LHC. The missing transverse energy and the time of arrival of the photon at the electromagnetic calorimeter are used to search for an excess of events over the expected background. No significant excess is observed, and lower limits at the 95% confidence level are obtained on the mass of the lightest neutralino, m(neutralino) > 220 GeV (for c tau 6000 mm (for m(neutralino) < 150 GeV)

    Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at s\sqrt{s} = 7 TeV

    Get PDF
    The energy calibration and resolution of the electromagnetic calorimeter (ECAL) of the CMS detector have been determined using proton-proton collision data from LHC operation in 2010 and 2011 at a centre-of-mass energy of sqrt(s)=7 TeV with integrated luminosities of about 5 inverse femtobarns. Crucial aspects of detector operation, such as the environmental stability, alignment, and synchronization, are presented. The in-situ calibration procedures are discussed in detail and include the maintenance of the calibration in the challenging radiation environment inside the CMS detector. The energy resolution for electrons from Z-boson decays is better than 2% in the central region of the ECAL barrel (for pseudorapidity abs(eta)<0.8) and is 2-5% elsewhere. The derived energy resolution for photons from 125 GeV Higgs boson decays varies across the barrel from 1.1% to 2.6% and from 2.2% to 5% in the entraps. The calibration of the absolute energy is determined from Z to e+e- decays to a precision of 0.4% in the barrel and 0.8% in the endcaps
    corecore