171 research outputs found

    On χs-Orthogonal Matrices

    Get PDF
    In this paper we, introduced the concept of χs-orthogonal matrices and extended some results of Abaraetal, [3] in the context of secondary transpose

    Quark Matter in Neutron Stars: An apercu

    Get PDF
    The existence of deconfined quark matter in the superdense interior of neutron stars is a key question that has drawn considerable attention over the past few decades. Quark matter can comprise an arbitrary fraction of the star, from 0 for a pure neutron star to 1 for a pure quark star, depending on the equation of state of matter at high density. From an astrophysical viewpoint, these two extreme cases are generally expected to manifest different observational signatures. An intermediate fraction implies a hybrid star, where the interior consists of mixed or homogeneous phases of quark and nuclear matter, depending on surface and Coulomb energy costs, as well as other finite size and screening effects. In this brief review article, we discuss what we can deduce about quark matter in neutron stars in light of recent exciting developments in neutron star observations. We state the theoretical ideas underlying the equation of state of dense quark matter, including color superconducting quark matter. We also highlight recent advances stemming from re-examination of an old paradigm for the surface structure of quark stars and discuss possible evolutionary scenarios from neutron stars to quark stars, with emphasis on astrophysical observations.Comment: 15 pages, 1 figure. Invited review for Modern Physics Letters

    Neutrality of a magnetized two-flavor quark superconductor

    Full text link
    We investigate the effect of electric and color charge neutrality on the two-flavor color superconducting (2SC) phase of cold and dense quark matter in presence of constant external magnetic fields and at moderate baryon densities. Within the framework of the Nambu-Jona-Lasinio (NJL) model, we study the inter-dependent evolution of the quark's BCS gap and constituent mass with increasing density and magnetic field. While confirming previous results derived for the highly magnetized 2SC phase with color neutrality alone, we obtain new results as a consequence of imposing charge neutrality. In the charge neutral gapless 2SC phase (g2SC), a large magnetic field drives the color superconducting phase transition to a crossover, while the chiral phase transition is first order. At larger diquark-to-scalar coupling ratio GD/GSG_D/G_S, where the 2SC phase is preferred, we see hints of the Clogston-Chandrasekhar limit at a very large value of the magnetic field (B∼1019B\sim 10^{19}G), but this limit is strongly affected by Shubnikov de Haas-van Alphen oscillations of the gap, indicating the transition to a domain-like state.Comment: 19 pages, 7 figures, Matches with the published versio

    Surface structure of Quark stars with magnetic fields

    Full text link
    We investigate the impact of magnetic fields on the electron distribution in the electrosphere of quark stars. For moderately strong magnetic fields B∼1013B\sim 10^{13}G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the spectral features of quark stars. We outline the main observational characteristics of quark stars as determined by their surface emission, and briefly discuss their formation in explosive events termed Quark-Novae, which may be connected to the rr-process.Comment: 9 pages, 3 figures. Contribution to the proceedings of the IXth Workshop on High Energy Physics Phenomenology (WHEPP-9), Bhubaneswar, India, 3-14 Jan. 200

    EFFECT OF FLAVONE AND ITS MONOHYDROXY DERIVATIVES ON ANIMAL MODELS OF DEPRESSION IN SWISS ALBINO MICE

    Get PDF
    Objectives: This research was designed to investigate the antidepressant activity of a few structurally related flavones (flavone, 3‑hydroxyflavone, and 7‑hydroxyflavone) and the possible mechanisms involved. Methods: Antidepressant activity was evaluated in mice by subjecting them to forced swim test and tail suspension test. The involvement of adrenergic, serotonergic, nitric oxide (NO), and opioid mechanisms was investigated using suitable interacting chemicals. Results: Flavone, 3‑hydroxyflavone, and 7‑hydroxyflavone exhibited a significant and dose‑dependent reduction in total time of immobility in the forced swim test and tail suspension test. Pre‑treatment with alpha‑methyl‑para‑tyrosine and parachlorophenyl alanine attenuated the reduction in immobility period produced by flavone and its derivatives in forced swim test. Naloxone pre‑treatment partially reversed the effect of flavone while L‑arginine pre‑treatment did not alter their effect. Conclusion: The investigated flavones exhibited promising antidepressant activity in both the animal models of depression. However, the flavone compounds did not alter the motor coordination and ambulatory behavior in the Rotarod and locomotor activity test. The participation of serotonergic, adrenergic, and opioid mechanism in the antidepressant activity of these compounds was elucidated from the results, and the role of NO pathway was excluded

    Direct Urca neutrino rate in colour superconducting quark matter

    Full text link
    If deconfined quark matter exists inside compact stars, the primary cooling mechanism is neutrino radiation via the direct Urca processes d->u+e+antinu_e and u+e->d+nu_e. Below a critical temperature, T_c, quark matter forms a colour superconductor, one possible manifestation of which is a condensate of quark Cooper pairs in an electric-charge neutralising background of electrons. We compute the neutrino emission rate from such a phase, including charged pair-breaking and recombination effects, and find that on a material temperature domain below T_c the pairing-induced suppression of the neutrino emission rate is not uniformly exponential. If gapless modes are present in the condensed phase, the emissivity at low temperatures is moderately enhanced above that of completely unpaired matter. The importance of charged current pair-breaking processes for neutrino emission both in the fully gapped and partially gapped regimes is emphasised.Comment: 5 pages, 2 figures; to appear in Phys. Rev. C (Rapid Comm.

    Neutrino emission in neutron matter from magnetic moment interactions

    Full text link
    Neutrino emission drives neutron star cooling for the first several hundreds of years after its birth. Given the low energy (∼\sim keV) nature of this process, one expects very few nonstandard particle physics contributions which could affect this rate. Requiring that any new physics contributions involve light degrees of freedom, one of the likely candidates which can affect the cooling process would be a nonzero magnetic moment for the neutrino. To illustrate, we compute the emission rate for neutrino pair bremsstrahlung in neutron-neutron scattering through photon-neutrino magnetic moment coupling. We also present analogous differential rates for neutrino scattering off nucleons and electrons that determine neutrino opacities in supernovae. Employing current upper bounds from collider experiments on the tau magnetic moment, we find that the neutrino emission rate can exceed the rate through neutral current electroweak interaction by a factor two, signalling the importance of new particle physics input to a standard calculation of relevance to neutron star cooling. However, astrophysical bounds on the neutrino magnetic moment imply smaller effects.Comment: 9 pages, 1 figur

    Influences of nano zero valent ion of kaolin and Fe2+ supported kaolin nanoparticles for metal ion separation thorough ultrafiltration

    Get PDF
    In this work, clay based nanocomposite material was synthesized by wet chemical route and nano zero valent ion of kaolin (nZVI:Kaolin) were prepared using sodium borohydride reduction method. The nZVI:Kaolin and Fe:Kaolin nanoparticles were characterized using XRD, FTIR and SEM and antimicrobial activity. The nZVI:Kaolin and Fe:Kaolin were incorporated into polyethersulfone (PES) membranes for metal ion separation through ultrafiltration. The influences of nZVI:Kaolin and Fe supported clay nanoparticles on PES membranes were characterized their modification in functional properties, hydrophilicity and morphological structure. The clean water flux was enhanced to PES membrane by addition of nZVI:Kaolin and Fe:Kaolin nanoparticles. The Cu (ii), Ni (ii) and Cd (ii) metal ions flux was increased for 0.15 wt% of nZVI and Fe:Kaolin nanoparticles in PES which is due to increase in hydrophilicity and change in morphological structure
    • …
    corecore