1,188 research outputs found

    Theory of spin, electronic and transport properties of the lateral triple quantum dot molecule in a magnetic field

    Full text link
    We present a theory of spin, electronic and transport properties of a few-electron lateral triangular triple quantum dot molecule in a magnetic field. Our theory is based on a generalization of a Hubbard model and the Linear Combination of Harmonic Orbitals combined with Configuration Interaction method (LCHO-CI) for arbitrary magnetic fields. The few-particle spectra obtained as a function of the magnetic field exhibit Aharonov-Bohm oscillations. As a result, by changing the magnetic field it is possible to engineer the degeneracies of single-particle levels, and thus control the total spin of the many-electron system. For the triple dot with two and four electrons we find oscillations of total spin due to the singlet-triplet transitions occurring periodically in the magnetic field. In the three-electron system we find a transition from a magnetically frustrated to the spin-polarized state. We discuss the impact of these phase transitions on the addition spectrum and the spin blockade of the lateral triple quantum dot molecule.Comment: 30 pages (one column), 9 figure

    Wave attenuation and dispersion due to floating ice covers

    Full text link
    Experiments investigating the attenuation and dispersion of surface waves in a variety of ice covers are performed using a refrigerated wave flume. The ice conditions tested in the experiments cover naturally occurring combinations of continuous, fragmented, pancake and grease ice. Attenuation rates are shown to be a function of ice thickness, wave frequency, and the general rigidity of the ice cover. Dispersion changes were minor except for large wavelength increases when continuous covers were tested. Results are verified and compared with existing literature to show the extended range of investigation in terms of incident wave frequency and ice conditions

    A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots

    Full text link
    We demonstrate a reconfigurable quantum dot gate architecture that incorporates two interchangeable transport channels. One channel is used to form quantum dots and the other is used for charge sensing. The quantum dot transport channel can support either a single or a double quantum dot. We demonstrate few-electron occupation in a single quantum dot and extract charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure valley splittings in the range of 35-70 microeV. By energizing two additional gates we form a few-electron double quantum dot and demonstrate tunable tunnel coupling at the (1,0) to (0,1) interdot charge transition.Comment: Related papers at http://pettagroup.princeton.ed

    Direct control of the tunnel splitting in a one-electron double quantum dot

    Full text link
    Quasi-static transport measurements are employed on a laterally defined tunnel-coupled double quantum dot. A nearby quantum point contact allows us to track the charge as added to the device. If charged with only up to one electron, the low-energy spectrum of the double quantum dot is characterized by its quantum mechanical interdot tunnel splitting. We directly measure its magnitude by utilizing particular anticrossing features in the stability diagram at finite source-drain bias. By modification of gate voltages defining the confinement potential as well as by variation of a perpendicular magnetic field we demonstrate the tunability of the coherent tunnel coupling.Comment: High resolution pdf file available at http://www2.nano.physik.uni-muenchen.de/~huettel/research/anticrossing.pd

    Parallel magnetic field induced giant magnetoresistance in low density {\it quasi}-two dimensional layers

    Full text link
    We provide a possible theoretical explanation for the recently observed giant positive magnetoresistance in high mobility low density {\it quasi}-two dimensional electron and hole systems. Our explanation is based on the strong coupling of the parallel field to the {\it orbital} motion arising from the {\it finite} layer thickness and the large Fermi wavelength of the {\it quasi}-two dimensional system at low carrier densities.Comment: 4 pages with 4 figures. Accepted for Publication in Physical Review Letter
    • …
    corecore