2 research outputs found
Strong magnetic response of submicron Silicon particles in the infrared
High-permittivity dielectric particles with resonant magnetic properties are
being explored as constitutive elements of new metamaterials and devices in the
microwave regime. Magnetic properties of low-loss dielectric nanoparticles in
the visible or infrared are not expected due to intrinsic low refractive index
of optical materials in these regimes. Here we analyze the dipolar electric and
magnetic response of loss-less dielectric spheres made of moderate permittivity
materials. For low material refractive index there are no sharp resonances due
to strong overlapping between different multipole contributions. However, we
find that Silicon particles with refractive index 3.5 and radius approx. 200nm
present a dipolar and strong magnetic resonant response in telecom and
near-infrared frequencies, (i.e. at wavelengths approx. 1.2-2 micrometer).
Moreover, the light scattered by these Si particles can be perfectly described
by dipolar electric and magnetic fields, quadrupolar and higher order
contributions being negligible.Comment: 10 pages, 5 figure