53 research outputs found

    Phosphatidic acid counteracts S-RNase signaling in pollen by stabilizing the actin cytoskeleton

    Get PDF
    S-RNase is the female determinant of self-incompatibility (SI) in pear (Pyrus bretschneideri). After translocation to the pollen tube, S-RNase degrades rRNA and induces pollen tube death in an S-haplotype-specific manner. In this study, we found that the actin cytoskeleton is a target of P. bretschneideri S-RNase (PbrS-RNase) and uncovered a mechanism that involves phosphatidic acid (PA) and protects the pollen tube from PbrS-RNase cytotoxicity. PbrS-RNase interacts directly with PbrActin1 in an S-haplotype-independent manner, causing the actin cytoskeleton to depolymerize and promoting programmed cell death in the self-incompatible pollen tube. Pro-156 of PbrS-RNase is essential for the PbrS-RNase-PbrActin1 interaction, and the actin cytoskeleton-depolymerizing function of PbrS-RNase does not require its RNase activity. PbrS-RNase cytotoxicity enhances the expression of phospholipase D (PbrPLDĪ“1), resulting in increased PA levels in the incompatible pollen tube. PbrPLDĪ“1-derived PA initially prevents depolymerization of the actin cytoskeleton elicited by PbrS-RNase and delays the SI signaling that leads to pollen tube death. This work provides insights into the orchestration of the S-RNase-based SI response, in which increased PA levels initially play a protective role in incompatible pollen, until sustained PbrS-RNase activity reaches the point of no return and pollen tube growth ceases

    Physiological and Nutritional Responses of Pear Seedlings to Nitrate Concentrations

    Get PDF
    Nitrogen (N) is an important element for plant growth, and a suitable N supply is crucial to ensure optimal yields from fruit trees. Frequently, application of N fertilizers to fruit trees is often excessive, which not only leads to environmental pollution, but also reduces the output from fruit trees through N toxicity. To evaluate the effects of different concentrations of nitrate on plant growth, root-morphological traits, and other nutritional elementā€™s responses in pear, pear seedlings (Pyrus betulifolia Bunge) were treated with five levels of N. Both N-deficiency and an excess of N inhibited the growth and development of pear rootstocks. However, different visible symptoms were observed among treated leaves and roots. Leaf yellowing, the stimulation of root elongation, a decrease in nitrate reductase activity and chlorophyll content were observed under N-deficiency conditions. On the other hand, dark green leaves accompanied by coking, the suppression of root elongation, and a decrease in nitrate reductase activity and chlorophyll content were displayed under regimes of excess N. In addition, not only the N content, but also the content of other mineral nutrients was influenced by nitrate treatments. Taken together, these results suggested that a careful choice of N fertilizer supply is crucial to ensure normal growth and development in pear trees

    Different Modes of Gene Duplication Show Divergent Evolutionary Patterns and Contribute Differently to the Expansion of Gene Families Involved in Important Fruit Traits in Pear (Pyrus bretschneideri)

    No full text
    Pear is an important fruit crop of the Rosaceae family and has experienced two rounds of ancient whole-genome duplications (WGDs). However, whether different types of gene duplications evolved differently after duplication remains unclear in the pear genome. In this study, we identified the different modes of gene duplication in pear. Duplicate genes derived from WGD, tandem, proximal, retrotransposed, DNA-based transposed or dispersed duplications differ in genomic distribution, gene features, selection pressure, expression divergence, regulatory divergence and biological roles. Widespread sequence, expression and regulatory divergence have occurred between duplicate genes over the 30ā€“45 million years of evolution after the recent genome duplication in pear. The retrotransposed genes show relatively higher expression and regulatory divergence than other gene duplication modes. In contrast, WGD genes underwent a slower sequence divergence and may be influenced by abundant gene conversion events. Moreover, the different classes of duplicate genes exhibited biased functional roles. We also investigated the evolution and expansion patterns of the gene families involved in sugar and organic acid metabolism pathways, which are closely related to the fruit quality and taste in pear. Single-gene duplications largely account for the extensive expansion of gene families involved in the sorbitol metabolism pathway in pear. Gene family expansion was also detected in the sucrose metabolism pathway and tricarboxylic acid cycle pathways. Thus, this study provides insights into the evolutionary fates of duplicated genes

    Differentially expression analyses in fruit of cultivated and wild species of grape and peach

    No full text
    Abstract Through agronomic traits and sequencing data, the cultivated and wild varieties of grapes and peaches were analyzed and compared in terms of fruit size, fruit flavor, fruit resistance, and fruit color. Cultivated grapes and peaches have advantages in fruit size, soluble sugar content, sugar and acid ratio, etc. Wild grapes and peaches have utility value in resistance. The results showed that there were 878 and 301 differentially expressed genes in cultivated and wild grapes and peaches in the three growth stages, respectively based on the next-generation sequencing study. Ten and twelve genes related to the differences between cultivated and wild grapes and peaches were found respectively. Among them, three genes, namely chalcone synthase (CHS), glutathione S-transferase (GST) and malate dehydrogenase (MDH1) were present in both cultivated and wild grapes and peaches

    Difference in regulation mechanisms of ENaC by aldosterone and glucocorticords

    No full text

    Identification and expression analysis of ATP-binding cassette (ABC) transporters revealed its role in regulating stress response in pear (Pyrus bretchneideri)

    No full text
    Abstract Background ATP-binding cassette (ABC) transporter proteins constitute a plant gene superfamily crucial for growth, development, and responses to environmental stresses. Despite their identification in various plants like maize, rice, and Arabidopsis, little is known about the information on ABC transporters in pear. To investigate the functions of ABC transporters in pear development and abiotic stress response, we conducted an extensive analysis of ABC gene family in the pear genome. Results In this study, 177 ABC transporter genes were successfully identified in the pear genome, classified into seven subfamilies: 8 ABCAs, 40 ABCBs, 24 ABCCs, 8 ABCDs, 9 ABCEs, 8 ABCFs, and 80 ABCGs. Ten motifs were common among all ABC transporter proteins, while distinct motif structures were observed for each subfamily. Distribution analysis revealed 85 PbrABC transporter genes across 17 chromosomes, driven primarily by WGD and dispersed duplication. Cis-regulatory element analysis of PbrABC promoters indicated associations with phytohormones and stress responses. Tissue-specific expression profiles demonstrated varied expression levels across tissues, suggesting diverse functions in development. Furthermore, several PbrABC genes responded to abiotic stresses, with 82 genes sensitive to salt stress, including 40 upregulated and 23 downregulated genes. Additionally, 91 genes were responsive to drought stress, with 22 upregulated and 36 downregulated genes. These findings highlight the pivotal role of PbrABC genes in abiotic stress responses. Conclusion This study provides evolutionary insights into PbrABC transporter genes, establishing a foundation for future research on their functions in pear. The identified motifs, distribution patterns, and stress-responsive expressions contribute to understanding the regulatory mechanisms of ABC transporters in pear. The observed tissue-specific expression profiles suggest diverse roles in developmental processes. Notably, the significant responses to salt and drought stress emphasize the importance of PbrABC genes in mediating adaptive responses. Overall, our study advances the understanding of PbrABC transporter genes in pear, opening avenues for further investigations in plant molecular biology and stress physiology

    Evolution of the Aroma Volatiles of Pear Fruits Supplemented with Fatty Acid Metabolic Precursors

    No full text
    To examine the biochemical metabolism of aroma volatiles derived from fatty acids, pear fruits were incubated in vitro with metabolic precursors of these compounds. Aroma volatiles, especially esters, were significantly increased, both qualitatively and quantitatively, in pear fruits fed on fatty acid metabolic precursors. Cultivars having different flavor characteristics had distinctly different aroma volatile metabolisms. More esters were formed in fruity-flavored ā€œNanguoliā€ fruits than in green-flavored ā€œDangshansuliā€ fruits fed on the same quantities of linoleic acid and linolenic acid. Hexanal and hexanol were more efficient metabolic intermediates for volatile synthesis than linoleic acid and linolenic acid. Hexyl esters were the predominant esters produced by pear fruits fed on hexanol, and their contents in ā€œDangshansuliā€ fruits were higher than in ā€œNanguoliā€ fruits. Hexyl esters and hexanoate esters were the primary esters produced in pear fruits fed on hexanal, however the content of hexyl ester in ā€œDangshansuliā€ was approximately three times that in ā€œNanguoliā€. The higher contents of hexyl esters in ā€œDangshansuliā€ may have resulted from a higher level of hexanol derived from hexanal. In conclusion, the synthesis of aroma volatiles was largely dependent on the metabolic precursors presented

    Genome-wide identification and expression analysis of the OSCA gene family in Pyrus bretschneideri

    No full text
    Responses to osmotic change are critical for plant survival, development and reproduction. Hyperosmolality-induced cytosolic free calcium concentration [(Ca2+)i] increase (OSCAs) proteins have been described as osmosensors in plants and animals. To investigate functional roles of OSCA genes (PbrOSCAs) in pear (Pyrus bretschneideri), bioinformatics and expression analyses of the PbrOSCAs were performed. Sixteen PbrOSCA members were identified in the pear genome. PbrOSCA family members were classified into four clades by sequence alignment and phylogenetic analysis. Moreover, protein structure analysis indicated that the 16 PbrOSCA members shared similar structures with their homologues in Arabidopsis and rice. Multi-transmembrane patterns and ion transport pore sites of PbrOSCAs were conserved, and expression profiles of PbrOSCA varied among tissues and with osmotic stress conditions. In particular, expression levels of six PbrOSCAs gradually increased with time during osmotic stress, suggesting that PbrOSCAs may play regulatory roles in plant osmotic stress responses.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Self-Incompatibility in Papaver rhoeas Activates Nonspecific Cation Conductance Permeable to Ca2+ and K+[W]

    No full text
    Cellular responses rely on signaling. In plant cells, cytosolic free calcium is a major second messenger, and ion channels play a key role in mediating physiological responses. Self-incompatibility (SI) is an important genetically controlled mechanism to prevent self-fertilization. It uses interaction of matching S-determinants from the pistil and pollen to allow ā€œselfā€ recognition, which triggers rejection of incompatible pollen. In Papaver rhoeas, the S-determinants are PrsS and PrpS. PrsS is a small novel cysteine-rich protein; PrpS is a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates S-specific increases in cytosolic free calcium and alterations in the actin cytoskeleton, resulting in programmed cell death in incompatible but not compatible pollen. Here, we have used whole-cell patch clamping of pollen protoplasts to show that PrsS stimulates SI-specific activation of pollen grain plasma membrane conductance in incompatible but not compatible pollen grain protoplasts. The SI-activated conductance does not require voltage activation, but it is voltage sensitive. It is permeable to divalent cations (Ba2+ ā‰„ Ca2+ > Mg2+) and the monovalent ions K+ and NH4+ and is enhanced at voltages negative to āˆ’100 mV. The Ca2+ conductance is blocked by La3+ but not by verapamil; the K+ currents are tetraethylammonium chloride insensitive and do not require Ca2+. We propose that the SI-stimulated conductance may represent a nonspecific cation channel or possibly two conductances, permeable to monovalent and divalent cations. Our data provide insights into signal-response coupling involving a biologically important response. PrsS provides a rare example of a protein triggering alterations in ion channel activity
    • ā€¦
    corecore